首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
随着低空飞行密度不断增加,低空航行安全已引起广泛关注,由于低空环境复杂,低空飞行受地面障碍物和天气影响比商用航空显著,传统的空中交通警戒与防撞系统(TCAS)和其他冲突探测方法并不适用于低空密集飞行环境。针对传统探测方法计算量大、适用性差的不足,引入支持向量机(SVM)的二元分类方法,通过对本机和周边飞机航迹归一化处理,采用智能优化算法对关键参数进行优化,利用模拟数据对分类器进行预先训练,实现了适用于低空飞行的高效冲突探测。以大量的仿造数据对算法有效性进行了测试验证,结果表明漏警率和误警率分别控制在约0.1%和6%,克服了传统确定型方法与概率型方法难以兼顾效率与适用性的缺陷。   相似文献   

2.
高超声速滑翔飞行器(HGV)拦截问题中,轨迹预报是成功拦截的重要基础。针对HGV机动能力强、轨迹多变的特点,提出了一种基于支持向量机(SVM)和扩展卡尔曼滤波(EKF)的轨迹预报方法。在HGV的滑翔段机动模式分析的基础上,将HGV的机动运动分解为纵向运动模式和侧向运动模式,进而对运动模式的特征参数予以标定,形成SVM的训练集。建立地基单雷达轨迹跟踪模型,采用EKF对HGV滑翔段轨迹进行稳定跟踪并实现对运动模式特征参数的估计。基于SVM,建立了HGV运动识别框架,实现了对HGV滑翔段轨迹的预报。对平衡滑翔和跳跃机动2种典型机动模式进行数学仿真验证,结果表明,所提方法可以提高对该类目标的轨迹预报精度。   相似文献   

3.
基于量子万有引力搜索的SVM自驾故障诊断   总被引:1,自引:0,他引:1  
针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对参数寻优的收敛速度和收敛精度,将基于GSA的QGSA应用于SVM的参数寻优中,以解决SVM由于参数选取不当导致过学习或欠学习的问题,从而获得最优的分类模型。通过模拟实验分析,当训练样本数量为50时,基于QGSA的SVM故障诊断模型分类准确率便能达到96.530 6%,而基于遗传算法(GA)的SVM故障诊断模型分类准确率为92.040 8%,基于GSA的SVM故障诊断模型分类准确率为91.632 7%。仿真实验结果表明,基于QGSA的SVM故障诊断模型具有更好的故障诊断能力。   相似文献   

4.
针对机载燃油泵故障数据来源较少、诊断效率较低、维护费用较高、缺乏有效故障特征的问题,利用机载燃油转输系统实验平台收集的振动信号和压力信号,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的机载燃油泵故障诊断方法。首先,利用EMD提取振动信号不同频段的能量值作为特征参量,并结合压力信号均值构造故障特征向量;其次,分别采用遗传算法(GA)、粒子群优化算法(PSO)、樽海鞘群算法(SSA)、网格搜索算法(GS)对SVM的惩罚参数和径向基函数(RBF)参数进行优化,并对优化后的SVM诊断性能进行了评估;最后,分别采用SVM、极限学习机(ELM)、BP神经网络作为分类器,并对3种分类器的诊断性能进行了评估。结果表明:采用3种群智能优化算法的SVM故障诊断率均能达到100%,寻优过程中均未陷入局部最优解,且寻优时间相当,其中GA的训练时间最短,可以采用GA对SVM参数进行寻优;当采用GA_SVM作为故障分类器时,用时较短,且故障诊断率较高,可以选用GA_SVM分类模型实现机载燃油泵的高效故障诊断。   相似文献   

5.
针对无人空中交通管理(UTM)中的冲突解脱问题,提出了以可达集分析为基础的实时避撞算法。该算法可用于城市低空环境中的密集交通流空域,保证无人机(UAV)飞行过程的安全性。基于相对运动的概念,通过分析平面空域中的飞行博弈问题对避撞系统进行建模,同时利用水平集方法和最优控制理论对无人机的可达集进行分析和计算,使用机载传感器获取无人机与周围物体的信息,为每架无人机提供新的避撞策略。通过3种不同空域环境的飞行案例进行仿真实验,验证了该策略不仅可以得到平滑的飞行路径,实时安全地解决冲突解脱问题,而且针对合作/非合作目标均有效。  相似文献   

6.
基于NN与SVM的图像质量评价模型   总被引:1,自引:1,他引:1  
为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Ratio)和结构相似度(SSIM,Structure Similarity)作为图像质量的描述参数,给出"野点"的定义,提出"野点预测"并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support Vector Machines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42% ,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中"野点"的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量.   相似文献   

7.
为提高机场鸟击防范管理水平,实现探鸟雷达与多种驱鸟设备联动,提出一种基于支持向量机(SVM)的机场智能驱鸟决策方法。该方法包括训练和测试两部分。训练部分利用机场鸟类探测预警与驱赶联动系统获取的大量历史鸟情信息,结合专家知识,通过数据预处理与支持向量机训练,建立驱鸟策略分类模型;测试部分根据驱鸟实时智能决策结果,对驱鸟策略分类模型进行持续修正与优化。通过某机场的实测鸟情信息数据与若干驱鸟实例,证明驱鸟策略分类模型具有较高的决策正确率,并能够通过自身修正与优化应对各种新问题。本文方法针对实时鸟情信息,实现了多种驱鸟设备的优化组合,克服了驱鸟设备长期重复运行造成的鸟类对驱鸟设备的耐受性问题,极大改善了驱鸟效果。   相似文献   

8.
基于GA-SVM的GNSS-IR土壤湿度反演方法   总被引:1,自引:1,他引:1  
针对提高大范围土壤湿度测量精度的问题,研究了土壤湿度的全球卫星导航系统干涉测量法(GNSS-IR),提出了一种基于支持向量机(SVM)的土壤湿度反演模型,利用遗传算法(GA)的自动寻优功能寻找SVM的最佳参数。结果表明,GA-SVM模型在测试集上得到的土壤湿度反演值与实测值的平均绝对百分比误差(MAPE)仅为0.69%,最大相对误差(MRE)为1.22%,线性回归方程决定系数达到了0.956 9。进一步与统计回归、粒子群优化的SVM模型(PSO-SVM)及反向传播(BP)神经网络方法进行对比,结果说明:在样本数目有限的情况下,GA-SVM方法更适用于土壤湿度的GNSS-IR技术反演,且反演精度较高,泛化性能良好。   相似文献   

9.
基于卷积神经网络的遥感图像舰船目标检测   总被引:4,自引:1,他引:4  
针对遥感图像背景复杂、受环境因素影响大的问题,提出一种将卷积神经网络(CNN)与支持向量机(SVM)相结合的舰船目标检测方法,利用卷积神经网络可自主提取图像特征并进行学习的优点,避免了复杂的特征选择和提取过程,在复杂海况背景图像的处理中体现出较优的性能;同时,由于军舰样本获取难度大,应用迁移学习的概念,利用大量民船样本辅助军舰目标的检测,取得较好的效果。通过参数调整与实验验证,此方法在自行建立的测试集上检测率达到90.59%,对光照、环境等外界因素具有一定程度的鲁棒性。  相似文献   

10.
提出了一种基于支持向量机方法(SVM)的地球同步轨道相对论电子事件预报模型. 模型以平均影响值(MIV)作为指标, 筛选出预报输入参量. 这些参量包括, 前一日的大于2MeV电子日积分通量、太阳风速度、太阳风密度、Dst指数和前二日的AE指数. 模型包含回归和分类两个部分, 可以分别对未来一天的电子日积分通量和相对论电子事件强度的级别做出预报. 对2008年样本进行测试, 在相对论电子通量的预报中, 预报值和实测值之间的线性相关系数为0.85, 预报效率为0.71; 对相对论电子事件级别预报的准确率为82%, 可以较准确区分开事件状态与非事件状态. 结果表明, SVM预报模型对相对论电子事件有较好的预报效果.  相似文献   

11.
  总被引:2,自引:0,他引:2  
针对低空自由飞行航线自主的特点,提出了一种概率型的短期冲突探测算法。算法考虑导航误差、控制误差及风扰动引起的飞行器位置预测误差,建立了合理的误差模型,以计算短期内飞行器之间的瞬时冲突概率;采用坐标变换以及扩展冲突区域,提出了三维空间内机动飞行情况下,计算冲突概率的近似解析算法。通过与Paielli和Erzberger(PE)提出的近似算法及Monte Carlo仿真算法的比较,表明本文算法提高了计算冲突概率的准确性,且计算复杂性远远低于Monte Carlo算法,满足低空自由飞行的实时性要求,可实现复杂环境下的冲突探测。  相似文献   

12.
对实际统计数据中存在的相关性、不确定性和非线性问题,提出贝叶斯支持向量机预测模型方法.构建基于高斯分布的权值分布模型描述信息的不确定性,基于先验概率分布和贝叶斯关系获得后验分布模型,利用极大似然方法和递推迭代算法求解后验分布的最佳参数,从而得到关联向量机.建立起基于参数分布多维时间序列预测模型,将每一步迭代过程中的支持向量机输入作为随机变量,考虑数据不确定性的传递,递推得到贝叶斯支持向量机预测输出.由于贝叶斯支持向量机可以有效反映随机影响及其传递,可以克服数据不确定性和相关性的影响,因此基于贝叶斯支持向量机预测效果更加符合实际.实例表明利用贝叶斯支持向量机预测高科技企业发展趋势与实际发展趋势接近,可以克服数据相关性、不确定性和非线性对信息模型的影响,具有较高的预测精度和预测鲁棒性.  相似文献   

13.
为了解决非线性数据和非线性函数的回归问题,采用了支持向量机序列最小优化算法.原始序列最小优化(SMO,Sequential Minimal Optimization)算法存在训练速度慢和训练结果不稳定的缺点,为了能加快SMO算法的训练速度和提高训练结果稳定性,通过改进优化乘子更新方法、采用双阈值法、预存核函数、增加停机准则等方法对SMO算法做了改进.仿真实验表明,改进的算法能很好地对非线性数据和非线性函数进行回归,具有比原始SMO算法更快的训练速度和稳定的训练结果.   相似文献   

14.
基于支持向量机的滚动轴承状态寿命评估   总被引:1,自引:1,他引:1  
应用状态寿命描述滚动轴承的使用寿命,并建立了滚动轴承的状态寿命评估模型.状态寿命评估模型建模的关键是振动信号的特征提取和状态的识别算法.针对滚动轴承振动的特点,提取小波包重构信号的频带能量构造特征向量,利用支持向量机作为辨识算法建立滚动轴承状态寿命评估模型.滚动轴承全寿命试验验证了模型的有效性和可信性.  相似文献   

15.
标准近似支持向量机受类别差异影响和噪声、野值数据干扰较重,使得分类能力不高.提出一种改进的近似支持向量机算法——加权近似支持向量机,通过为不同类别设定不同的惩罚参数和为每个样本引入模糊隶属值,有效补偿类别差异带来的倾向性并去除噪声和野值数据的影响.模糊隶属函数的选取采用样本与类中心的距离和样本紧密度的加权平均值计算,以有效去除噪声和野值数据的干扰.经过分析,改进后的算法可近似归结为一种岭回归模型.实验表明,与标准近似支持向量机相比,该算法有更好的分类能力.   相似文献   

16.
基于支持向量机的飞行器多余物信号识别   总被引:1,自引:0,他引:1  
针对飞行器控制电路在生产制造过程中可能引入金属线头等微小多余物,从而留下短路等安全隐患的问题,提出了一种基于微粒碰撞噪声检测(PIND)的飞行器多余物材质识别方法。首先,利用短时自相关函数提取PIND信号的脉冲部分;然后,提取多种时频域统计特征,并与梅尔频率倒谱系数(MFCC)特征结合起来;最后,训练多分类支持向量机模型实现材质分类。为验证所提方法的有效性,采集了3种不同材质多余物的PIND信号进行模型训练及测试,实验结果表明,所提方法材质识别准确率达98%,优于同类方法的相关结果。   相似文献   

17.
为解决直升机低空飞行时的防撞告警问题,提出一种利用地形匹配来修正直升机与地形之间相对位置误差的前视告警方法。首先,利用直升机飞行动力学模型预测逃逸轨迹,在此基础上生成告警边界。然后,将机载地形数据库与雷达探测的高程数据从空域变换到频域,通过基于互功率谱算法的地形匹配方法计算得到直升机与地形的相对位置误差,以获取二者之间的准确相对位置。由于地形匹配效果受地形起伏程度影响,采用地形熵选择匹配区域方法在进行地形匹配前筛除地形起伏较小的匹配区域,以此提高匹配准确度。最后,基于UH-60直升机飞行动力学模型设置了1 000组对照算例进行告警方法仿真测试。仿真结果表明:采用所提告警方法的测试组相比于常规告警方法,虚警率降低约16%,告警成功率提高近30%。说明所提的前视告警方法能够有效实现直升机低空飞行防撞告警。   相似文献   

18.
基于EMD与LS-SVM的刀具磨损识别方法   总被引:1,自引:0,他引:1  
针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之和,然后分别对每一个固有模态函数进行自回归建模,最后提取每一个自回归模型的系数组成特征向量,特征向量被分为两组,一组用于对最小二乘支持向量机训练,另一组用于识别刀具磨损状态.试验结果表明:该方法能很好地识别刀具磨损状态,与BP神经网络相比具有更高的识别率.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号