首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
基于平滑先验分析和模糊熵的滚动轴承故障诊断   总被引:1,自引:1,他引:1       下载免费PDF全文
由于机械系统的复杂性,振动信号的随机性表现在不同尺度上,基于对振动信号进行多尺度的模糊熵(FE)分析,提出了基于平滑先验分析(SPA)和模糊熵的滚动轴承故障诊断方法。采用SPA方法对振动信号进行自适应分解,得到振动信号的趋势项和波动项;分别计算趋势项和波动项的模糊熵;将模糊熵值作为特征向量,输入至基于优化算法的支持向量机(OSVM)。将该方法应用于滚动轴承实验数据,分析结果表明:该方法在仅提取两个分量特征的情况下即可达到100%的故障诊断精度,可有效实现滚动轴承的故障诊断。   相似文献   

2.
提出了一种基于自适应多尺度模糊熵、ILS(迭代拉普拉斯得分)特征选择和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法。该方法采用变分模态分解对振动信号进行分解和重构,并计算重构信号的复合多尺度模糊熵;同时采用迭代拉普拉斯得分选择敏感故障特征,并将特征选择结果输入到基于粒子群优化支持向量机的多故障分类器进行识别。将提出的方法应用于滚动轴承试验数据分析。结果表明:该方法对试验数据的故障识别率为100%。并将基于ILS特征选择方法与基于SFS(sequential forward selection)特征选择进行了对比,表明基于SFS特征选择的最高识别率为92.86%,而基于ILS特征选择的故障识别率达到100%。   相似文献   

3.
由于直升机自动倾斜器滚动轴承振动信号具有非平稳、非线性特点,并夹杂非敏感故障特征信息,导致网络模型对周期信号过于敏感,不能充分利用故障信息的问题;针对此问题,提出一种变分模态分解(VMD)与连续小波变换(CWT)联合提取敏感故障特征的方法.研究表明:在相同模型训练下,该方法相对其他方法最高可提升模型准确率20.8%.为...  相似文献   

4.
向玲 《航空动力学报》2018,33(10):2553-2560
基于Akima插值和固有时间尺度分解(ITD)中的线性变换,提出了一种改进的固有时间尺度分解(IITD),在此基础上,进一步提出基于IITD近似熵(AE)和模糊C均值聚类(FCM)相结合的滚动轴承故障的诊断方法。采用IITD方法对滚动轴承的振动信号进行分解,通过互信息分析,筛选出前3个含主要特征信息的固有旋转分量(PR),计算其近似熵值作为信号的特征向量,将得到的特征向量输入到FCM分类器中分析并得到分类结果。实验分析表明:分别与基于EMD、ITD近似熵和FCM聚类相结合的方法比较,该方法的分类系数更接近1,平均模糊熵更接近0,即此方法对滚动轴承的正常、内圈故障、外圈故障、滚动体故障信号以及对内圈的不同损伤程度信号均能更有效更准确地进行分类。   相似文献   

5.
向丹  岑健 《航空动力学报》2015,30(5):1149-1155
研究了滚动轴承故障诊断单一故障信号的局限性和故障特征的非线性,从信息融合的理论出发,利用非线性动力学参数熵作为特征,提出了基于经验模态分解(EMD)熵特征融合的方法来解决滚动轴承故障诊断问题.首先将原始信号进行EMD,利用EMD的自适应多分辨率的特点计算EMD得到的固有模态函数(IMF)信号的多种熵值,然后采用核主元分析(KPCA)对提取的状态特征进行信息融合,从而得到互补的特征,最后将提取的融合特征通过支持向量机(SVM)进行故障诊断.滚动轴承故障诊断实验表明:该方法结合了EMD、信息熵理论和KPCA强大的非线性处理能力的特点,可以进行滚动轴承故障诊断.   相似文献   

6.
针对中介轴承振动信号传递到机匣测表面上路径复杂,导致故障特征提取及识别困难等问题,提出了 一 种基于广义精细复合多尺度量子熵(generalized refined composite multiscale quantum entropy,GRCMQE)、核主成分分析(kernel principal component analysis,KPCA)与参数优化支持向量机的中介轴承故障诊断方法.该方法首先采用GRCMQE从振动信号中提取故障特征,构建高维故障特征集.其次,采用KPCA方法对高维特征数据降维,得到低维流形特征.然后,将得到的特征输入到基于交叉验证优化的支持向量机(cross valida-tion-support vector machine,CV-SVM)中,完成故障模式识别.最后,在中介轴承故障数据集上对所提出的方法进行测试,结果表明该方法能够有效实现中介轴承不同故障类型的识别,并且故障识别精度达到98.33%.  相似文献   

7.
针对滚动轴承在变工况和跨型号下故障诊断效果不佳、泛化能力较差,同时在实际训练中样本数量严重不足的问题,从振动信号序列特性出发,提出了一种基于改进傅里叶模态分解(MFMD)和Transformer convolutional neural network(Transformer-CNN)的故障诊断方法。设计了振动数据预处理模块,利用MFMD和位置编码对数据样本进行预处理并标记序列位置关系,随后设计了基于注意力机制的Transformer-CNN序列建模单元,利用最大值池化优化了缩放点积注意力机制的循环堆叠结构,减少了网络的待训练参数并提升了网络序列建模能力。采用预训练-微调的迁移学习方法,将预训练模型参数迁移至目标域并进行模型微调,可以避免数据不足导致的过拟合现象。实验结果表明:相较于基准算法,Transformer-CNN可以降低50%以上的故障诊断错误率。在变工况和跨型号的小样本迁移学习实验中,该算法可以提升8.75%的诊断准确率,同时可以提升收敛速度。   相似文献   

8.
采用改进的小波分解和重构算法与包络分析相结合的方法,提取滚动轴承振动信号的故障特征频率。改进的小波分解和重构方法避免了 Mallat 算法频率混淆的缺陷,通过对重构信号特定频带进行包络分析,更加准确地提取了滚动轴承的故障特征频率。通过对无故障滚动轴承和内圈、外圈有故障的滚动轴承振动信号的分析,说明这种方法能够有效诊断滚动轴承的故障,并将该方法成功应用于某型航空发动机主轴承故障诊断。  相似文献   

9.
将基于循环平稳理论及2阶循环统计量的谱相关或谱相关密度分析方法加以改进,提出一种时频分析方法并将其用于滚动轴承发生复合故障时调制现象循环调制频率即故障特征频率的提取。通过对滚动轴承复合故障的仿真及实际实验振动数据进行分析,结果表明:与同时提取出调制频率和载频的传统包络解调谱分析方法不同,改进的谱分析方法可以只提取出调制频率,提取的谱结构分布具有更清晰的表达效果,从而为滚动轴承的复合故障特征提取提供一种方法。   相似文献   

10.
提出了局部均值分解(Local mean decomposition,简称LMD)方法和径向基函数神经网络(Radial Basis Function Neural Network,简称RBF)相结合的滚动轴承故障诊断方法.LMD方法是一种新的自适应时频分析方法,能够有效地提取故障特征.该方法首先采用LMD对滚动轴承振动信号进行分解,计算分解得到的PF分量能量比,作为特征向量输入到RBF神经网络中,进行故障分类和识别.通过真实滚动轴承数据的故障诊断实验,验证了该方法的有效性.  相似文献   

11.
搭建油液在线监测实验平台进行磨粒分类识别实验,运用支持向量机和最近邻法相结合的方法对飞机发动机油液中的磨粒进行分类识别;其中基于支持向量机的磨粒分类器的输入为磨粒的主轴长度、纹理相关性、圆度等特征参数,输出为磨粒的分类结果;实验结果表明,基于支持向量机的磨粒分类器的分类准确率高达94%,并且由于最近邻法的使用,分类器的处理速度也提高了30%。  相似文献   

12.
基于神经网络的滚动轴承故障包络信号的自动识别方法   总被引:3,自引:0,他引:3  
介绍了一种基于神经网络的滚动轴承故障包络信号的自动识别方法。将从包络信号的时域和频域信息中提取的反映滚动轴承故障的特征信息作为BP神经网络的输入,用BP算法对该网络进行训练。利用BP神经网络的智能性来实现滚动轴承故障的智能诊断。  相似文献   

13.
贺志远  陈果  何超  滕春禹 《航空学报》2020,41(10):423658-423658
最小熵解卷积(MED)是旋转机械故障诊断领域广泛应用的有效方法,它可以从噪声中提取微弱的故障冲击成分。然而它的有效性依赖于滤波长度的选取,目前,针对MED滤波长度的自动选取并没有明确有效的方法,往往需要人为经验选择。因此,在MED的算法基础上,通过结合自相关函数,提出了一种MED最优滤波长度选择的新方法,该方法构建了一个能量判定标准来衡量输出信号的周期性,从而自适应地确定MED的最优的滤波长度以提升微弱故障信号中的周期脉冲成分,避免MED方法容易出现最大化单一随机脉冲现象的发生。该方法应用于滚动轴承故障微弱冲击特征提取,并利用两个实例进行了有效性验证:基于辛辛那提试验中心的滚动轴承全寿命疲劳加速试验;带机匣的航空发动机转子试验器模拟远离轴承振动源的故障试验。结果表明,所提方法可以消除传递路径影响,提升微弱冲击周期性特征,并且与最大相关峭度解卷积(MCKD)方法相比,诊断结果更具优势。  相似文献   

14.
为了深入优化滚动轴承在变负载驱动环境下特征提取不充分、轴承故障特征表征不足的问题,提出了基于双线性池化引导特征融合的轴承故障诊断算法。对读取到的原始信号数据进行预处理,通过去除直流分量、噪声滤波、抗混叠滤波、时域窗函数等操作,提高信号处理后的振动谱图质量;对预处理后的信号数据进行傅里叶变换,计算出变换后的幅值和频率数据,并绘制对应的振动谱图;利用通道注意力和空间注意力改进Res2Net网络,提取不同关注点下的视觉特征,并基于双线性池化方法进行多特征融合;利用全连接和softmax函数构建分类头,实现轴承故障分类。结果表明:所提出的方法在凯斯西储大学轴承数据集以及德国Paderborn数据集中的精确率分别为98.22%、97.94%,在轴承故障诊断中,所提算法不仅在理论上融合了自动化控制理论与控制工程原理,而且在实践中验证了其在轴承故障诊断中的有效性,为实现轴承故障的早期预警和智能诊断提供了新的技术途径。  相似文献   

15.
卷积神经网络和峭度在轴承故障诊断中的应用   总被引:1,自引:1,他引:1       下载免费PDF全文
李俊  刘永葆  余又红 《航空动力学报》2019,34(11):2423-2431
针对传统智能诊断方法依靠专家知识和人工提取数据特征工作量大的问题,结合深度学习方法在特征提取和处理大数据方面的优势,研究了一种基于卷积神经网络和振动信号峭度指标的滚动轴承故障诊断方法。该方法将深度学习应用于轴承故障诊断,提取滚动轴承正常状态、内圈故障、外圈故障和滚动体故障4种状态的振动信号,将振动信号分段处理得到峭度指标,使用数据到图像的转换方法将峭度指标转换为灰度图,送入卷积神经网络模型完成故障分类。在进行滚动轴承故障诊断的实验时,所提的模型诊断准确率达到99.5%,高于传统支持向量机(SVM)算法的95.8%。   相似文献   

16.
杨平  苏燕辰 《航空动力学报》2019,34(11):2432-2439
针对许多基于深度学习的滚动轴承故障诊断方法在小样本数据集下诊断性能下降的问题,提出一种基于卷积门控循环神经网络的轴承故障诊断模型。该模型使用两层的卷积网络来从输入信号中提取特征,同时使用tanh函数作为激活函数,且池化层使用大池化核来进行重叠下采样。将所提取得到的高层特征连接到双向门控循环网络。合并循环网络正向和逆向的最后一个状态,并连接一层全连接层进行输出。选用凯斯西储大学的轴承故障数据集来验证模型在小样本数据集下的诊断性能,实验结果表明,相比于其他类型的模型,该模型在仅有20个训练样本的情况下依然保持97%的识别准确率。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号