首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
叶片间相角对蒸汽轮机叶片颤振的影响   总被引:2,自引:0,他引:2  
蒸汽轮机叶片的气动力衰减和叶片间相位角存在密切关系, 叶片间相角是决定蒸汽轮机叶片的气动弹性稳定性的重要因素, 应用可考虑叶片间相角变化, 适用于蒸汽轮机失速颤振预测的变形激盘法, 考察了叶片间相角对蒸汽轮机叶片的气弹稳定性的影响。   相似文献   

2.
发展了一种可考虑叶片间相角变化的三维失速颤振预测方法。二维计算的最小气动阻尼比三维值低, 说明取特征截面的二维方法偏于保守, 且特征截面的取法具有任意性, 故二维方法仅能作为叶片颤振初步预估之用。为提高颤振预估的精度, 需用三维计算对二维计算结果进行校核。三维和二维计算均表明叶片间相角对蒸汽轮机叶片气弹稳定性影响很大, 叶片颤振预测必须考虑这一关键因素的影响。   相似文献   

3.
本文给出了确定风力透平叶片振动时的三元非定常气动力的方法,用核函数方法建立三元非定常气动力方程,用格林公式确定核函数,对于核函数的奇点作了有效处理,给出了处理关系式。对不同的工况进行了三元非定常气动力计算,与二元计算的对照表明,在所计算的范围内,非定常气动力的三元效应是不大的,可以应用相应的二元数值分析再沿截面积分(即准三元方法)来进行非定常气动力计算。  相似文献   

4.
文献记载的战斗机在设计、制造或工程管理期间应用多学科优化(MDO)的事例不是很多,文献记载的有关已经能飞行的飞机更是罕见。文章概括描述了F-22战斗机的全部设计过程,重点描述了应用MDO的气动力弹性/结构设计过程。设计过程中最重要的工作是建立飞机有限元模型(A/V FEM)。A/V FEM是链接设计要求与载荷、颤振、应力、动力学与控制律设计过程的通用组成成分。相互依赖的多学科处理过程包括满足颤振要求的刚度处理、适应外部载荷再分配的控制律处理、满足装载特性要求的挠曲与刚度处理、气动力弹性优化大题目内的应力大小分析与气动伺服弹性滤波器设计。一个受约束的适合于载荷、应力、颤振、动力学、控制律集成、重量估算等等的A/V FEM是担负优化设计的有效手段,成功的A/VFEM能出色地进行刚度与载荷设计,结果形成既满足飞机性能要求又顾及结构参数设计成功迭代的最小重量优化设计。根据构型管理,结合特有的专业分析程序、全部的飞行轨迹、数据处理过程等来调整大规模的A/VFEM。如果使用结构分解/反向变换方法的话,利用大规模模型的回报将在相当程度上节省人的工作时间。详细的载荷网格、燃料箱燃料-蒸汽边界与飞机机动姿态及过载相匹配、详细的内部和外部加压等等以前的难题现在都能顺利地解决,满足了一体化的产品可维修性评价和分析技术(IPT)要求。该计算方法为了反映风洞非线性压力分布而修改壁板挠性压力载荷,特别是应付操纵面偏转,因而能极度逼真地模拟挠曲对刚性的系数以及柔性载荷的计算。最后,这些计算功能和使用简便性使其能够成功地处理广域网之间的数据和多种场所的计算。另外,实时计算结果以关系式数据库的方式存储就能够对争论难题快速直接地解答。  相似文献   

5.
考虑气动弹性的风力机叶片性能分析   总被引:1,自引:0,他引:1  
考虑气动弹性对风力机叶片的影响,采用叶素-动量理论计算气动力,采用盒形梁理论计算结构变形,耦合静气动弹性平衡方程,建立了风力机叶片静气动弹性分析程序。本文运用该程序进行了多种风速下叶片载荷及风轮性能的计算,分析了气动弹性对原设计的影响。结果表明,对于兆瓦级风力机,在大风速情况下,气动弹性对风轮性能有着明显影响,并会造成气动载荷的重新分布,影响结构设计的准确性。该方法可用于对叶片气动设计与载荷计算方法进行气动弹性修正。  相似文献   

6.
7.
考虑二次流效应的叶片颤振预估方法   总被引:1,自引:0,他引:1  
采用流线曲率法和Adkins-Smith二次涡模型相结合的方法得到周向非均匀的定常流场, 再与变叶片间相角的变形激盘法相结合发展了考虑二次流效应的三维叶片颤振预估方法, 并用此方法对BF-1-2转子的气弹稳定性进行了分析。结果表明, 考虑二次流效应计算的颤振边界与实验一致。不同二次流与叶片颤振的相关性中尖部漏流涡对叶片气弹稳定性的影响较大。   相似文献   

8.
针对涉及动、静叶干涉的叶片气动弹性振动问题,基于Volterra级数方法,建立了尾流激励的叶片气动力降阶模型,分析了稳态条件和识别信号幅值对气动力降阶模型辨识精度的影响。结果表明:所建立的气动力降阶模型能够正确表征尾流对叶片的激励作用,不同流场稳态条件和阶跃信号幅值下气动力降阶模型的结果基本相同。  相似文献   

9.
阎云聚  顾家柳  徐明 《航空学报》1993,14(8):365-371
借助于子结构模态综合法,为研究真实的失调叶片盘耦合振动问题提出了一种非常接近于实际叶片盘的力学模型和简便的理论分析方法;并通过对一个实际失调叶片盘的强迫振动试验,对力学模型、计算公式和程序进行了考核验证。结果表明,试验与计算相当吻合。  相似文献   

10.
西陵长江大桥全桥气动弹性模型风洞试验研究   总被引:3,自引:0,他引:3  
介绍了西陵长江大桥成桥状态和施工状态全桥气动弹性模型在均匀平滑流和湍流两种流场中的风洞试验,评估了西陵长江大桥颤振、抖振和涡激振动等风振特性,给出了颤振风速和抖振振幅。可供研究其它大跨度桥梁的风振特性参考。  相似文献   

11.
跨音风扇进口级增压比的进一步提高,主要受两方面的制约,一是效率,二是气动弹性失稳。这两个因素与转子流场中的激波和激波诱导的大尺度分离紧密相关。激波结构又和转子叶片前缘空间曲线形状直接联系。因此,如何精心设计转子叶片前缘空间曲线形状来控制激波结构,就成了当代风扇气动力学的前沿,并导致风扇弯掠空气动力学概念的出现。在具体设计中,此问题可称之为气动与气动弹性综合剪裁。本文简述综合剪裁中的一个组成部分,即气动弹性剪裁问题,并对一个单级风扇转子叶片给出实例。  相似文献   

12.
直升机旋翼桨叶气弹优化减振设计方法   总被引:4,自引:0,他引:4  
向锦武  张晓谷 《航空动力学报》1999,14(2):212-214,224
从振源着手通过设计参数的最优选择设计直升机旋翼桨叶,使传递到机身的交变载荷最小达到降低振动水平的目的是旋翼桨叶设计思想的进步。本文在简单概述该方法的基础上,以某4桨摆振柔软的无铰复合材料桨叶为研究对象,将其大梁模拟为一单闭室复合材料盒形梁,研究了通过铺层角的优化选择,降低4次/转的桨毂交变力与力矩的情况。数值算例表明方法效果良好。   相似文献   

13.
朱之丽  廖阔 《航空动力学报》1995,10(2):173-174,202
给出了一种估算燃气轮机加、减速过程中叶尖间隙及效率随时间变化的简化方法。算例结果与国外文献的对比表明该方法是可行的且有一定的准确度。   相似文献   

14.
可扩展的燃气轮机仿真对象模型   总被引:6,自引:1,他引:6  
谢志武  苏明  翁史烈 《航空动力学报》1999,14(2):143-147,217-218
应用面向对象的分析与设计方法进行可扩展的燃气轮机仿真建模研究。将燃气轮机仿真的各种计算任务概括为部件计算、流路计算和系统状态计算三个层次,并在此基础上提出节点-连接器-部件模型,构造了一个部件模型、工质流程及仿真算法均可扩展的仿真类属框架,并通过一个三轴燃气轮机的容积效应法仿真验证了该模型的有效性和可扩展能力。   相似文献   

15.
带冠和冷却小孔涡轮叶片振动特性分析   总被引:2,自引:1,他引:1  
某发动机第一级涡轮叶片是带有矩形冠和9小孔冷却涡轮叶片,为分析该级叶片振动特性,建立了有限元模型,分析了小孔、均匀温度场和非均匀温度场下、叶冠边界条件等对振动特性的影响。同时,依据共振疲劳损伤寿命理论确定叶冠的最佳间隙值,来增加使用寿命。计算结果表明:在无真实的温度场时,考虑工作时的平均温度是有效的工程处理方法;小孔对叶片振动特性的影响是较微弱的。   相似文献   

16.
悬停状态下无铰旋翼模型气弹稳定性试验   总被引:1,自引:0,他引:1  
夏品奇  徐桂祺 《航空动力学报》1994,9(4):405-408,445
通过悬停状态下2m直径旋翼模型试验, 研究了旋翼结构参数及动力学参数对无铰旋翼桨叶气弹稳定性的影响, 参数包括桨叶总距角、预锥角、预掠角、摆振频率和旋翼转速。桨叶为挥-摆-扭耦合结构, 并能构成面内柔软和面内刚硬旋翼。试验采用在垂直方向以摆振后退型频率进行周期变距激振的新方法, 得到了与理论相一致的结论。   相似文献   

17.
求解气动弹性系统动态特性的一种准确方法   总被引:1,自引:0,他引:1  
本文提出一种求解气动弹性系统动态特性的准确方法——正交搜索法,它利用复变函数中解析函数保角映射的特性,沿复频率s的实部和虚部交譬搜索,逐步达到所求复方程的根。该算法能在计算机上实现,直观、简便、实用。  相似文献   

18.
非等温循环粘塑性本构模型研究   总被引:1,自引:0,他引:1  
本文提出了一个考虑在非等温条件下循环硬化行为的温度依赖性的粘塑性本构模型。在该模型中, 引入了三个具有不同演化速率的背应力演化方程;对各向同性变形阻力引入了具有先前加载历史和温度历史记忆的演化方程。将本文模型用于1Cr18Ni9Ti不锈钢的单轴非等温循环加载历史下材料变形行为的本构描述中, 其预言结果与实验结果吻合较好, 表明该模型能很好地描述材料在非等温条件下的循环变形行为。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号