首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.  相似文献   

2.
Cassini radio and plasma wave surveys aim to study radio emissions, plasma waves, thermal plasma and dust near Saturn. Using the characteristic solution and dynamics method, the influence of electron beam on the loss cone and bi-Maxwellian distribution of whistler mode waves in the parallel alternating electric field and magnetic field is studied. The dispersion relation and the growth rate of Saturn's magnetic layer were deduced and calculated in detail. Parameter analysis is performed by changing the parameters of the plasma like number density, AC frequency, temperature anisotropy, etc. The influence of AC frequency on Doppler shift and the comparative study of growth rate of oblique and parallel propagating waves are analyzed using generalized distribution function. We found temperature anisotropy AT=1.25 can explain the linear spatiotemporal growth rate of whistler mode waves. It provides the majority of the observed frequency integral power. It can be seen that the effective parameters for the generation of Whistler mode waves are not only temperature anisotropy, but also the relativistic factors discussed in the results and discussion section, and the AC field frequency and width of the loss cone distribution function.  相似文献   

3.
4.
We have studied the effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions. The data obtained evidence a significant fourfold increase ofs pontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight.  相似文献   

5.
6.
Radiosensibility of higher plant seeds after space flight.   总被引:4,自引:0,他引:4  
The influence of long-term storage of higher plant seeds under space flight conditions (49 to 827 days) on their radiosensibility was studied in the experiments on the orbital stations Salyut 6 and 7. Short-term storage has been proved to have no effect on radiosensitivity of Crepis capillaris seeds. Only in the case of maximal exposure duration the frequency of chromosome aberrations in post-flight irradiated seeds significantly exceeded the chromosome aberration frequency in the ground-based irradiated control. A statistically significant increase in the number of cells with multiple chromosome aberrations was also observed in this experiment. After gamma-irradiation of Arabidopsis thaliana seeds the germinating ability and survival rate of plants decreased depending on the duration of seed storage. Flight-exposed seeds were more sensitive to irradiations with respect to these parameters. A statistically significant increase in the frequency of recessive lethal mutations was observed only in two experiments of long exposure duration.  相似文献   

7.
8.
9.
10.
11.
12.
13.
A ring-like mass exerts a well computable gravitational attraction on a material point located along a straight line, being perpendicular to the plane of the ring in its centre. In the state of weightlessness, an oscillatory movement will develop owing to this effect. The period, T, of oscillation depends on the gravity constant, on the density and dimensions of the ring, as well as on the amplitude of the oscillation. Its exact computation can be based on the determination of the gravity potential function of the ring. The oscillation has the following form:
T=1√f√.I(r,R,z)
where f is the gravitational constant.
is the density of the ring, r and R are the radii of the ring, z is the distance of the turning point of the oscillation from the centre of the ring, while I/r,R,z/ is an improper integral which can be computed with any desired accuracy owing to the favourable function-theoretical character of the potential. We computed the oscillation period for various possible values of the parameters and obtained time data of an order of magnitude which falls into a well observable interval.The outlined conceptual experiment for the improved determination of the gravitational constant may present, of course, many technical difficulties and error sources /e.g. the path of the oscillating point is quite unstable owing to the extremely small acting forces, electric charges and also radiation pressure might be present, the gravity field would show a gradient on the spot of the experiment, etc./. Nevertheless, it seems to be worthwhile to consider carrying out such an experiment, using the possibilities offered by modern techniques in observing distances and time. For the path distortions caused by errors, we give a few estimates, but in case of realization of the experiment, a more detailed error analysis must be made.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号