首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
磁悬浮控制力矩陀螺(MSCMG)转子的稳定悬浮是实现陀螺高精度大力矩输出的关键。针对影响转子稳定悬浮的转子径向偏转耦合、非线性参数摄动、动框架效应问题,建立转子的动力学模型,提出了一种基于反馈线性化的增强型内模控制方法。利用反馈线性化方法实现径向偏转运动解耦以及转子动力学模型的线性化,设计增强型内模控制对转子系统的非线性参数摄动进行补偿并有效抑制动框架效应,提升了转子系统的稳定性。MATLAB仿真结果表明:所提出的控制方法实现了转子偏转的完全解耦,与PID控制相比,所提方法可以有效抑制参数摄动对转子径向平动的影响。对于转子径向偏转,与PID交叉控制相比,所提方法可以有效抑制框架扰动,提高系统控制精度。   相似文献   

2.
针对磁悬浮控制敏感陀螺(MSCSG)转子偏转通道强耦合及航天器姿态测量过程中受扰失稳问题,提出了一种磁悬浮转子偏转解耦抗干扰控制方法。分析了转子两自由度偏转耦合现象,设计了基于状态反馈的解耦控制器;建立了MSCSG在姿态测量过程中航天器的姿态运动对磁悬浮转子产生的干扰力矩模型,采用自抗扰控制器(ADRC)抑制磁悬浮转子的外部干扰;对所建立的扩展状态观测器(ESO)跟踪性和系统稳定性进行了分析,通过调节ADRC中非线性状态误差反馈控制律系数,实现了系统有界输入条件下的稳定。仿真结果表明:状态反馈解耦能够实现偏转自由度的完全解耦,ESO具有良好的跟踪性能,ADRC较传统PID控制方法具有更好的抗干扰性能。  相似文献   

3.
针对磁悬浮控制敏感陀螺(MSCSG)空间应用问题,研究其多自由度角动量包络模型。依据MSCSG的机械结构,分析磁悬浮转子径向万向偏转特性,明晰MSCSG轴向一个自由度转子转速变化飞轮力矩和径向两自由度转子万向偏转陀螺力矩输出机理。基于洛伦兹力磁轴承(LFMB)原理,分析径向偏转力矩与控制电流的线性关系,揭示MSCSG陀螺力矩高精度高带宽的优势。考虑转子径向偏角和轴向转速饱和问题,基于重构偏角和旋转矩阵构建MSCSG角动量包络模型。仿真分析了MSCSG径向偏转力矩高精度高带宽、轴向飞轮力矩高精度的特性。开展MSCSG偏转力矩高带宽性能测试,实验验证MSCSG能够输出大于100 Hz的径向偏转力矩。研究结果表明,MSCSG具有航天器高动态微振动抑制和高精度姿态控制的空间应用前景。  相似文献   

4.
磁悬浮控制敏感陀螺(MSCSG)是一种将姿态控制和姿态测量功能合二为一的新型陀螺,采用洛伦兹力磁轴承(LFMB)控制转子径向偏转。针对MSCSG 2个测量轴之间存在耦合的问题,提出了一种基于逆系统解耦的测量方法。首先,分析了MSCSG的结构组成,在此基础上建立了LFMB-转子系统动力学模型,推导了MSCSG陀螺进行两自由度姿态测量的工作原理;然后,分析了2个测量轴之间的耦合关系,进而提出采用逆系统对2个测量轴进行解耦。最后,对所提方法的有效性进行了仿真验证。仿真结果表明:在所提解耦方法作用下,2个测量轴之间的耦合效果得到了很好的抑制,测量精度得到了一定的提高。   相似文献   

5.
为了克服外部扰动突变对磁悬浮转子悬浮稳定度和磁悬浮控制敏感陀螺(MSCSG)输出力矩精度的影响,提出了一种基于自抗扰控制器(ADRC)和径向基函数(RBF)神经网络相结合的MSCSG径向偏转控制方法。阐明了ADRC参数对MSCSG控制效果的影响,通过优化设计ADRC,并将RBF神经网络和ADRC结合运用,实现对控制器参数的实时调试,从而克服外界扰动突变的影响。仿真证明所提方法相较于单ADRC控制,不仅改善了解耦控制精度,而且提高了系统对外部扰动和参数变化的响应速度和鲁棒性,可应用于MSCSG的高精度、快响应、强鲁棒控制。   相似文献   

6.
针对磁悬浮控制力矩陀螺(MSCMG)动框架效应导致转子悬浮精度和稳定性降低的问题,提出一种角加速率自适应前馈控制与自抗扰控制(ADRC)相结合的复合控制方法。建立了MSCMG转子动力学模型,分析了框架转动情况下的磁轴承扰动力矩,设计了角加速率自适应算法和线性扩张状态观测器,并结合状态反馈控制设计了复合控制器,同时对磁轴承控制系统进行了稳定性分析,仿真结果验证了所提复合控制方法的有效性。利用研制的样机搭建实验平台进行验证,结果表明:所提方法与传统PID控制方法相比,磁悬浮转子收敛后的位移峰峰值降低了39.6%,提高了磁悬浮系统的抗干扰能力。   相似文献   

7.
小型磁悬浮CMG高速转子动框架效应前馈补偿与实验   总被引:1,自引:0,他引:1  
磁悬浮控制力矩陀螺是航天器快速姿态控制与快速机动的新型空间执行机构。由于动框架效应,框架转动输出力矩反作用于飞轮转子,会导致磁轴承的径向载荷和控制电流发生改变。为抑制动框架效应对磁浮转子的影响,在分析力矩输出时高速磁浮转子受力特性的基础上,采用角速率前馈控制策略实现对动框架效应引发的力矩扰动的有效抑制,并在所研制的75Nms立式小型磁悬浮控制力矩陀螺上进行了整机输出特性测试。试验结果表明:该方法能在保证磁浮转子高速稳定的前提下有效抑制动框架效应,满足整机力矩输出的要求。  相似文献   

8.
  总被引:2,自引:2,他引:0  
磁悬浮控制敏感陀螺(MSCSG)是一种新概念陀螺,采用洛伦兹力磁轴承为力矩器驱动转子径向偏转。针对MSCSG转子旋转过程中产生不平衡振动的问题,分析了不平衡振动产生原理,并建立了解析模型。首先,分析了MSCSG的工作原理。然后,确定了转子不平衡条件下转子几何轴与惯性轴间的几何解析关系;推导了转子不平衡振动力矩数学模型,并对不平衡扰动量的能观性进行了判定;建立了包含振动源的磁轴承-转子控制系统模型,对闭环系统的不平衡振动产生机理进行了分析,并对不同转速下不平衡振动的响应特性进行仿真,仿真结果验证了所提出模型的正确性。最后,根据转子不平衡振动的特点提出了对其进行抑制的要求,为实现MSCSG转子不平衡振动控制奠定了理论基础。  相似文献   

9.
基于转子动力学构建了针对一种新型双球形包络面转子磁悬浮敏感陀螺(MSSG)动力学模型,并对陀螺关键误差源进行了理论分析。描述了磁悬浮敏感陀螺的结构特点与角速率测量原理,并分别建立了磁悬浮转子所受电磁力与电磁力矩数学模型,分析了转子微小平移与偏转对转子力学状态的影响机理,利用ANSYS软件得出的有限元仿真结果与模型计算结果基本吻合。在此基础上,从理论上对转子非球形误差和洛伦兹力磁轴承误差2种主要误差源进行了初步分析,给出了干扰力矩解析表达式。计算表明:转子非球形和洛伦兹力磁轴承中磁场分布不均是导致测量误差产生的主要因素。模型的构建可为磁悬浮敏感陀螺的优化设计与分析提供有效理论依据。   相似文献   

10.
    
新型磁悬浮控制敏感陀螺(MSCSG)高速转子具有万向偏转特性,可输出高精度和高带宽的偏转控制力矩,用于抑制天基平台的周期性振动。MSCSG采用5自由度(DOF)全主动控制,其径向2个扭动DOF的偏转控制由洛伦兹力磁轴承(LFMB)实现。基于LFMB的基本构型,建立电磁力和电磁力矩的数学模型,并分析出气隙磁密均匀度是影响输出力矩精度和角速率测量精度的主要因素。介绍了LFMB的优化设计结构,通过有限元仿真分析,结果表明所设计LFMB通过在内外永磁体表面增加1J50导磁薄片,能够有效提高气隙磁密分布的均匀度,输出控制力矩更加精确,有利于提高控制精度;通过使用梯形永磁体提供更大的供磁面积提高气隙磁密强度以降低功耗,同时梯形永磁体在转子高速旋转时便于限位,保证稳定性。本文研究可为具有偏转特性的磁悬浮类转子陀螺的设计与分析提供有益参考。  相似文献   

11.
为克服现有惯性稳定平台使用机械轴承干扰量大, 使用气/液浮轴承难度高, 使用磁阻力磁轴承线性度差的缺点, 提出一种基于洛伦兹力偏转磁轴承的新型洛伦兹惯性稳定平台(LISP)。为克服耦合效应和承载摩擦谐振干扰对平台偏转通道高频姿态补偿控制的影响, 提出一种基于LESO-PID结合卡尔曼滤波(KF)反馈的数字控制方案。根据洛伦兹力磁轴承(LFMB)支承偏转系统结构特点, 建立了LISP转子偏转动力学模型;利用模型分析径向两自由度偏转特性, 提出在PID控制器的基础上, 引入线性扩张状态观测器(LESO)和卡尔曼滤波反馈以抑制摩擦谐振干扰及耦合效应;搭建了以DSP和FPGA为核心的数字控制系统, 并以离散形式将控制方法进行数字化实现。采用对数频率特性判据和Nichols曲线对所提控制方法的稳定性进行分析, 通过仿真比较引入LESO-KF前后转子偏转通道的稳定性。实验结果表明:PID控制条件下在高频时失真, 引入LESO-KF后明显降低噪声及干扰, 同时还可对系统内部状态参数进行实时观测。实验结果验证了所提控制方法对摩擦谐振干扰及耦合效应的抑制作用。   相似文献   

12.
针对柱面洛伦兹力磁轴承(LFMB)偏角有限导致磁悬浮控制敏感陀螺(MSCSG)力矩输出持续时间短和气隙磁密均匀度低影响控制敏感精度的突出问题, 提出了一种高精度球面LFMB设计与分析方法。所设计的LFMB转子球面导磁套和定子球面绕组均与双球面陀螺转子同球心, 气隙呈球壳状, 保证转子偏转时定子绕组两侧气隙宽度不变, 相较于柱面LFMB, 转子可偏转角度由±0.6°扩大到±2°。利用等效磁路法推导了柱面与球面LFMB气隙磁密的数学解析模型, 并基于ANSYS命令流构建了柱面与球面LFMB的有限元仿真模型。仿真结果表明:在转子可偏转范围内, 沿偏转中心线, 球面LFMB最大磁密较柱面下降了34.1%;当转子不偏转时, 球面LFMB绕组截面内的磁密均匀度较柱面提高了11.6%;当转子偏转时, 球面LFMB绕组截面内的磁密均匀度较柱面提高了17.7%。所提方法为磁悬浮控制敏感陀螺控制与敏感性能的提升奠定了基础。   相似文献   

13.
吊挂系统是地面模拟空间机械臂重力卸载试验的重要方法之一.针对传统PID控制方式动作响应慢、鲁棒性差等缺点,提出了一种基于径向基函数(RBF)神经网络的智能控制方式.该方式有很强的非线性拟合能力,且学习规则简单,可映射任意复杂的非线性关系,便于计算机实现.利用该特性,设计了一种重力卸载精度较PID控制方式更高的控制器.该...  相似文献   

14.
为实现控制力矩陀螺框架伺服系统的高精度周期随动控制,采用比例积分微分(PID,Proportion Integration Differentiation)控制器结合重复控制器的控制方式,PID控制器实现框架伺服系统静态和匀速运动的高精度控制,插入式重复控制器实现对周期性输入信号的精确跟踪.对控制力矩陀螺框架系统进行了建模,设计了PID控制器与插入式重复控制器,并分析了重复控制器的稳定性条件、稳态跟踪性能和对扰动的抑制能力.仿真结果和实验结果表明:采用插入式重复控制器使控制力矩陀螺跟踪1Hz给定速度信号时的稳态跟踪误差大幅减少.PID控制器结合插入式重复控制器结构简单,两者可分开独立设计,参数设计容易.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号