首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
免疫反应大小是决定可植入生物材料能否开展临床应用的关键因素之一。研究评估了辐照和环氧乙烷(EO)两种灭菌方式处理后的小肠黏膜下层(SIS)脱细胞外基质材料在体内的免疫反应,旨在为其临床试验的开展提供可行依据。将两种灭菌方式处理的SIS脱细胞外基质材料皮下植入到BALB/c小鼠,第14和28天取样后,系统性地评估了其免疫反应。与仅手术不植入材料的阴性对照组相比,免疫器官(脾和淋巴结)的形态、质量、细胞数、淋巴细胞的体外增殖及酶联免疫吸附检测结果均无显著性差异,证明两种灭菌方式处理后的SIS脱细胞外基质材料都不会对小鼠引起明显的免疫排斥反应。流式细胞术分析及局部H&E染色结果表明,经EO灭菌处理的SIS脱细胞外基质材料对小鼠的免疫刺激更小,是更适用于此材料的灭菌方法。研究结果为SIS脱细胞外基质材料的灭菌程序及其临床应用提供了支持。   相似文献   

2.
    
在对气膜密封结构及性能分析的基础上,提出了双向旋转倒斜T字型与双层斜槽型柱面气膜密封界面结构;建立了2种结构密封气膜的数理模型和基于有限元方法的密封气膜数值分析模型;在VC平台上开发了基于有限元计算的密封气膜压力分布、系统密封特性及槽型结构多维参数优化的计算分析程序,实现了对密封气膜压力分布、密封特性的数值计算及结构参数的优化设计;在Gambit中建立了不同平均膜厚下倒斜T字型柱面气膜的物理模型和有限元分析模型,通过FLUENT进行了密封气膜特性数值仿真,商用软件仿真结果与自主开发程序数值计算结果对比一致性好,验证了开发程序的正确性;计算对比了2种界面结构的密封稳态特性与动态特性,在相同计算参数下,倒斜T字型的密封性能优于双层斜槽型,为密封系统设计选型提供了帮助;基于遗传思想的粒子群多维优化(GAPSO)计算程序的开发,为槽型参数的优化设计提供了有效的手段。  相似文献   

3.
    
坐标旋转变换常用方法有四元数和欧拉角。欧拉角需3次转位,3个参数,有12种转位次序;四元数需一次转位,4个参数。欧拉角因转位次序固定,极易出现万向节锁现象。四元数虽可避免万象节锁现象,但比欧拉角多一个维度,在数据存储上要多33%的数据量,且易因浮点数舍入误差累积而导致不合法现象。为避免上述方法的缺陷,提出一种新的坐标旋转变换方式,引入偏矢轴和偏矢角等全新概念,并严格推导了基于三元角的坐标旋转变换矩阵。在描述上,该方法仅需2次转位,比欧拉角转位次数少,且避免了万象节锁现象;比四元数参数少,且更形象直观,易理解,在对复合运动的描述上更为方便。所提方法对惯性导航、旋转调制等相关领域中姿态变换的设计与分析提供了更加方便的数学手段。  相似文献   

4.
    
针对铝合金蒙皮表面涂层修复对基材局部现场氧化处理的需求,研究了膏状氧化材料的调制方法,并探讨了氧化膏在2024-T3铝合金表面的成膜性能。通过扫描电镜、能谱、体视显微镜、点滴、电化学、接触角测试以及拉伸剪切实验考察了氧化膜的形貌和组成、耐蚀性能及粘接性能。实验表明,室温下铝合金表面经氧化膏处理后可快速生成氧化膜,膜层具有一定的微观孔洞结构,主要包含Al、F、Cr、O等元素;膜层耐蚀性与阿洛丁氧化液处理效果相近,与未氧化试样相比腐蚀电压由-0.898 V升至-0.880 V,腐蚀电流密度由2.582×10~(-5)A/cm~2降至3.334×10~(-7)A/cm~2,阻抗值由1.556×10~3Ω/cm~2增至1.347×10~5Ω/cm~2;表面自由能和粘附功分别由32.7 m J/cm~2和36.3 m J提高到55.7 m J/cm~2和109.7 m J,拉伸剪切强度由11.7 MPa提升为15.0 MPa,结果表明氧化膜的形貌和组成有助于获得更好的界面结合力并改善基材的粘接性能。  相似文献   

5.
    
为了与蜻蜓前后翼流动干扰的流动结构作比较,首先研究了悬停飞行状态下单个蜻蜓翼周围的三维流动结构,利用一套机电拍动翼运动模拟机构模拟了一个蜻蜓翼的拍动,使用数字体视粒子图像测速技术(DSPIV,Digital Stereo Particle Image Velocimetry)和多切面锁相技术分别测量了两个下拍拍动相位时刻(t=0.25T,0.375T)和两个上拍拍动相位时刻(t=0.75T,0.875T)蜻蜓翼周围的瞬时空间三维流场,运用局部涡识别准则中的λci准则来识别和显示了流场中的三维涡结构,还展示了蜻蜓翼各个展向测量截面中的|ωz|等值线、蜻蜓翼前缘涡的涡核线相对于蜻蜓翼上翼面的空间位置以及前缘涡在各个展向测量截面中的截面环量等.实验结果揭示了蜻蜓翼周围的三维流动结构在蜻蜓翼拍动时的演变历程.  相似文献   

6.
    
针对沿多孔壁面流动的牛顿流体液膜进行线性稳定性分析,特别考虑中等雷诺数的情形。认为多孔壁面处的流动满足Beavers-Joseph滑移边界条件,采用动量积分方法,得到色散关系和中性稳定曲线。多孔壁面的渗透性促进了液膜流动的不稳定,加快了液膜表面波的移动。随着雷诺数增大,中等雷诺数范围的最大增长率呈现先增大后减小趋势。最大增长率极值和不稳定波数区域与壁面渗透性有关。通过能量分析探究多孔介质渗透性对流动稳定性的作用机理,多孔壁面滑移速度的存在使得平均流速增大,速度梯度减小,导致黏性耗散减小从而促进流动失稳。  相似文献   

7.
    
地磁导航半实物仿真系统是地磁导航从理论走向工程应用的关键环节,而现阶段实时性是制约其发展的关键技术之一。针对这一问题,重点分析了系统中磁场模拟的延迟效应,建立了磁场模拟过程中电流随时间变化的数学模型,并基于此提出了一种基于超前调节的磁场模拟实时控制方法。仿真实验结果表明,初始调节电流增加18.43%的情况下,系统的实时性提高了5.45倍;实测实验结果表明,初始调节电流增加18.57%的情况下,系统的实时性提高了3倍。本文提出的方法可以为地磁导航半实物仿真系统实时性的提高提供一种参考。  相似文献   

8.
    
在众多光阳极材料中,纳米结构材料α-Fe2O3由于其光吸收显著、化学稳定性好、储量丰富等优势,被认为是最有前途的材料之一。利用水热法制备了具有良好光解水性能的Co和P掺杂α-Fe2O3纳米材料。经过掺杂后α-Fe2O3纳米材料仍为纳米棒状形貌,纳米棒的粒径增加。实验发现,Co掺杂α-Fe2O3制成的电极在标准光照射下的最大光生电流密度为0.453 mA/cm2,是未掺杂样品的20.6倍,P掺杂α-Fe2O3制成的电极在标准光照射下的最大光生电流密度为0.276 mA/cm2,是未掺杂样品的12.5倍,具备了高效光解水性能。同时通过SEM、TEM、XRD、UV-Vis和Mott-Schottky测试等方法,结合形貌与结构表征,研究了α-Fe2O3的光电化学分解水性能影响机理。  相似文献   

9.
    
属性是图像的语义描述,可以表示图像中某些内容的存在与否,它可以是物体的形状、材质、部件、类别以及功能,也可以是场景的类别以及上下文信息等.由于目标类别与所在背景存在相关关系,提出基于背景属性和目标属性相融合的前景目标识别方法,即对每种背景属性和目标属性分别训练支持向量机(SVM)分类器,并将属性在对应分类器上的得分进行串联组成新的特征,并训练得到最终分类器.对a-Pascal数据库中每幅图像,人工标注了10种背景属性,结合已有的目标属性,进行目标识别实验.与传统方法、基于目标属性的分类方法以及其他前景、背景相结合算法的对比实验结果表明,所提算法比其他算法提高大约2%,背景属性有助于提高目标识别率.  相似文献   

10.
    
提出了一种机载武器捷联惯导系统大失准角情况下快速传递对准QCKF(Quaternion Cubature Kalman Filter)算法.采用乘性四元数表示失准角,建立了基于四元数的速度加姿态匹配传递对准模型.将噪声扩维为状态思想应用到CKF(Cubature Kalman Filter)中以解决非线性过程噪声和量测噪声问题.考虑到表示旋转的四元数具有规范化以及符号相反的四元数表示相同旋转的性质,对CKF算法中关于四元数部分加权求均值转变为约束条件下基于投影长度的加权求均值,对CKF算法中关于四元数部分求方差进行符号预处理.仿真结果表明算法能在大失准角情况下提高对准精度.  相似文献   

11.
The effect of hypergravity on the white blood cell (WBC) line of mice was investigated by use of horizontal centrifuge. Several sets of experiments were performed, in which the parameters measured were the WBC and differential cell count in the peripheral blood. In another experiment, lymphocyte counts from the spleen, lymph nodes, and the thymus were measured. The needed samples were taken from the mice during a stay of 7-40 days under a hypergravity of 1.6G. The test groups that were placed on the arms of the centrifuge (1.6G) were compared with stationary control groups (1G) and a rotating control group located at the center of the centrifuge (1G). Such a comparison revealed the test animals to be deficient on all counts, to wit, showing a decrease in total number of WBC's, a decrease in lymphocyte number in the peripheral blood and a decrease in the number of lymphocyte in the spleen and thymus. The decrease of lymphocytes in peripheral blood was characterized by two different slopes--an early and temporary decrease at the first days of the experiment evident in both test and rotating control groups followed by a temporary increase, and a later persistent decrease, evident only in the test group, while in the rotating control lymphocyte counts reverted to normal. There were no significant differences in monocyte or neutrophil counts, except for a temporary increase in the number of neutrophils which peaked on the seventh day. In order to evaluate the effect of hypergravity on restoration of hematopoiesis following hematopoietic suppression, 5-fluoro-uracil (5-FU) was administered i.v. to both the experimental and control mice. Suppression of bone marrow was observed in all groups injected with 5-FU, but while there was later an increase in cell counts in the control groups, there was no such increase in the test group subjected to hypergravity.  相似文献   

12.
We investigated the effect of substratum adhesiveness on stimulated lymphocyte blastogenesis by reducing and blocking cell adhesion with poly (2-hydroxyethyl methacrylate) (poly-HEMA) in a simple on-ground system. Cells grown on medium-thick and thick poly-HEMA films were rounded in shape and displayed no signs of spreading. By contrast, on tissue culture plastic and very thin poly-HEMA films, they showed clear signs of spreading. The mitogenic response of lymphocytes grown on thick poly-HEMA films was reduced by up to 68% of the control (tissue culture plastic). Interferon-gamma production was near zero when the cells were grown on the least adhesive substratum. On uncoated plastic, activated lymphocytes subjected to high gravity (20g) exhibited an increased proliferation rate (40%) compared with 1g. By contrast, on poly-HEMA, high gravity did not improve lymphocyte responsiveness. These results show that activated lymphocytes need to anchor and spread prior to achieving an optimal proliferation response. We conclude that decreased lymphocyte adhesion could contribute to the depressed in vitro lymphocyte responsiveness found in the microgravity conditions of space flight.  相似文献   

13.
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1. convection along the surface of vertically oriented membranes and 2. surface potential variations by layer deformations at horizontally oriented membranes. Both effects should affect transport across the layer to the membrane surface and across the membrane. According to the theoretical predictions first experiments with gramicidin channels incorporated into artificial phosphatidylserine bilayer membranes show a significant difference in single channel currents in vertical and horizontal membranes. The complexity of biological membrane functions requires investigation of isolated membrane surface reactions and transport systems to study the gravisensitivity for each process separately.  相似文献   

14.
Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrhages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study of the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggest that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.  相似文献   

15.
The changes of [Ca2+]i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station "Salyut 6". These results: 1) indicate that observed Ca(2+)-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca2+ influx through membranes. In model presented, I propose that Ca(2+)-activated channels in plasma membrane in response to microgravity allow the movement of Ca2+ into the root cells, causing a rise in cytoplasmic free Ca2+ levels. The latter, in its turn, may induce the inhibition of a Ca2+ efflux by Ca(2+)-activated ATPases and through a Ca2+/H+ antiport. It is possible that increased cytosolic levels of Ca2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca2+]i. Plant cell can response to such a Ca2+ rise by an enhancement of membranous Ca(2+)-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca(2+)-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca2+ to plant cell.  相似文献   

16.
Effects of space flight and IGF-1 on immune function   总被引:1,自引:0,他引:1  
We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2 secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.  相似文献   

17.
In the present paper the relationship between cell cycle delays induced by Fe-ions of differing LET and the aberration yield observable in human lymphocytes at mitosis was examined. Cells of the same donor were irradiated with 990 MeV/n Fe-ions (LET=155 keV/micrometers), 200 MeV/n Fe-ions (LET=440 keV/micrometers) and X-rays and aberrations were measured in first cycle mitoses harvested at different times after 48-84 h in culture and in prematurely condensed G2-cells (PCCs) collected at 48 h using calyculin A. Analysis of the time-course of chromosomal damage in first cycle metaphases revealed that the aberration frequency was similar after X-ray irradiation, but increased two and seven fold after exposure to 990 and 200 MeV/n Fe-ions, respectively. Consequently, RBEs derived from late sampling times were significantly higher than those obtained at early times. The PCC-data suggest that the delayed entry of heavily damaged cells into mitosis results especially from a prolonged arrest in G2. Preliminary data obtained for 4.1 MeV/n Cr-ions (LET=3160 keV/micrometers) revealed, that these delays are even more pronounced for low energy Fe-like particles. Additionally, for the different radiation qualities, BrdU-labeling indices and apoptotic indices were determined at several time-points. Only the exposure to low energy Fe-like particles affected the entry of lymphocytes into S-phase and generated a significant apoptotic response indicating that under this particular exposure condition a large proportion of heavily damaged cells is rapidly eliminated from the cell population. The significance of this observation for the estimation of the health risk associated with space radiation remains to be elucidated.  相似文献   

18.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

19.
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号