首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Since STS-26, three large solar events have occurred during Shuttle missions; a geomagnetic storm during STS-29 and solar particle events (SPEs) during STS-28 and -34. The maximum dose to a crew attributed to an SPE was estimated to be 30 microGy (70 microSv). Time-resolved dosimetry measurements of the SPE dose during STS-28 were made using the Air Force Radiation Monitoring Equipment (RME)-III. Comparison of calculated and measured dose demonstrated a discrepancy, possibly a result of deficiencies in the geomagnetic cutoff model used. This experience demonstrates that dose from an SPE is strongly dependent on numerous factors such as orbit inclination, SPE start time, spectral parameters and geomagnetic field conditions; the exact combination of these factors is fortuitous. New sources of data and procedures are being investigated, including real-time tracking of auroral oval positions or determination of particle cutoff latitudes, for incorporation into operational Shuttle radiation support practices.  相似文献   

2.
Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.  相似文献   

3.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

4.
The Cosmic Radiation Environment & Activation Monitor (CREAM) was carried in high inclination (57.1 degrees) orbits on Shuttle missions STS-48 in September 1991 (altitude 570 km) and STS-53 (altitude 325 to 385 km) in December 1992. On both occasions the instrument observed an excess of counts due to protons of greater than 30 MeV in energy in the region off of South Africa where field lines of L=2.5 intersect low earth orbit. Meanwhile the Cosmic Radiation Environment and Dosimetry Experiment (CREDO) carried to 840 km, 98.7 degrees orbit on UOSAT-3 has continued to sample the high field portions of the L-shells around L = 2.5 from April 1990 until the present time. When careful subtraction of cosmic-ray contributions is made it can be seen that the March 91 enhancement persisted for approximately 8 months and explains the STS-48 observation. There would appear to have been a further increase produced by the 31 October 1992 flare event and seen by STS-53.  相似文献   

5.
As part of the "Cellular Mechanisms of Spaceflight-Specific Stress to Plants" experiment, nine BRIC (Biological Research in Canisters) 100VC canisters, each containing four 100 mm dia polycarbonate petri dishes with embryogenic daylily (Hemerocallis sp.) cultures, were launched on 12 Jan 97 (STS-81), transferred to 'Mir' and returned on 24 May 97 (STS-84). Pre-flight, flight and ground control data for temperature, relative humidity, CO2 and ethylene in the BRIC canisters are presented.  相似文献   

6.
7.
Under NASA's Space Environment Effects (SEE) program, we are developing new models for the low-altitude (250–1000 km, L < 1.5) trapped radiation environment based on data from the TIROS/NOAA polar orbiting spacecraft. The unique features of this data base and model include the long time series (more than one complete solar cycle) obtained from the TIROS/NOAA data and the use of a coordinate system more applicable to the low-altitude environment. The data show a strong variation (as much as a factor of 10) over the solar cycle and a hysteresis effect between the rising and falling portions of the solar cycle. Both the solar cycle variation and the hysteresis are functions of L. In addition to the hysteresis effect, the flux during a given cycle appears to be a function of the previous cycle. Superimposed on the gradual variation over the solar cycle, transient effects, correlated with solar particle events (SPEs), can be clearly seen. Comparison with the AP8 models shows that the measured flux is a factor of 2–3 higher than the model. These data have important implications for the development and use of trapped radiation models, and will also contribute to our knowledge of the source and loss mechanisms at work in the inner zone.  相似文献   

8.
Seedling growth and development on space shuttle.   总被引:1,自引:0,他引:1  
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.  相似文献   

9.
Measurements of radiation exposures aboard manned space flights of various altitudes, orbital inclinations and durations were performed by means of passive radiation detectors, thermoluminescent detectors (TLD's), and in some cases by active electronic counters. The TLD's and electronic counters covered the lower portion of the LET (linear energy transfer) spectra, while the nuclear track detectors measured high-LET produced by HZE particles. In Spacelab (SL-1), TLD's recorded a range of 102 to 190-millirad, yielding an average low-LET dose rate of 11.2 mrad per day inside the module, about twice the dose rate measured on previous space shuttle flights. Because of a higher inclination of the SL-1 orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles were also observed, yielding an overall average mission dose-equivalent of about 135 millirem, about three times higher than measured an previous shuttle missions. A dose rate more than an order of magnitude higher than for any other space shuttle light was obtained for mission STS-41C, reflecting the highest orbital altitude to date of 519 km.  相似文献   

10.
The first microgravity protein crystal growth experiments were performed on Spacelab I by Littke and John. These experiments indicated that the space grown crystals, which were obtained using a liquid-liquid diffusion system, were larger than crystals obtained by the same experimental system on earth. Subsequent experiments were performed by other investigators on a series of space shuttle missions from 1985 through 1990. The results from two of these shuttle flights (STS-26 and STS-29) have been described previously. The results from these missions indicated that the microgravity grown crystals for a number of different proteins were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth. This paper presents the results obtained from shuttle flight STS-32 (flown in January, 1990) and preliminary results from the most recent shuttle flight, STS-31 (flown in April, 1990).  相似文献   

11.
For specified geocentric orbits the impact probabilities, velocities and angles upon the different faces of the Long Duration Exposure Facility (LDEF) are calculated, and it is found that quite different distributions of micro-cratering are to be expected. In particular the flux to the East (leading) face should exceed that to the West (trailing) face by a very large ratio. The North and South faces receive exposures slightly in excess of the East face for lower-velocity impacts from low-inclination orbits, but much lower exposures than the East face for high-velocity impacts from high-inclination orbits. The Space face (pointing directly away from the Earth) and the Earth face (pointing directly towards the Earth) will have been subject to very few impacts from geocentric orbits. Therefore, whilst three sides (the East, North and South) will have been hit many times by artificial space debris, the other three (the West, Space and Earth) will have been impacted almost solely by natural meteoroids from heliocentric orbits, and may be used to determine the flux of such particles in the vicinity of the Earth. The ratios of impacts upon the East, West and Space faces will be useful indicators of the velocity/orbit distribution of meteoroids.  相似文献   

12.
We use the CORSIKA package (Heck et al., 1998) and AMS-01 flight data (Alcaraz et al., 2000) to evaluate the distribution of secondary particles in the Earth atmosphere. Distribution covers all longitudes and latitudes of STS-91 Space Shuttle flight trajectory to Mir Space Station. Moreover distribution covers all depth in the atmosphere in the evaluated area. We show distributions for e−, e+, μ+, μ−, gammas, hadrons and Cherenkov light from primary protons and helium component of cosmic rays flux. Our results compare favorably with other estimates made by different techniques.  相似文献   

13.
基于运动模型的低空非合作无人机目标识别   总被引:1,自引:1,他引:0  
为保障低空安全,在利用雷达数据探测无人机目标的同时剔除飞鸟等虚警信息,提出了一种基于运动模型的低空非合作无人机目标识别方法,作为已有目标跟踪方法应用的拓展。首先,建立多种运动模型模拟无人机和飞鸟目标运动;然后,基于多种运动模型进行目标跟踪,并估计各种运动模型的出现概率;最后,以各种运动模型在连续时间内出现概率的方差均值来度量目标运动模型的转换频率。通过对仿真数据和机场低空监视雷达实测数据的处理,所提方法能够在杂波环境中跟踪无人机目标并剔除飞鸟目标,进一步验证了其有效性和实用性。   相似文献   

14.
The antimonate precipitation technique was used to evaluate the effects of microgravity and ethylene on the cellular and subcellular distribution of free calcium ions in soybean root apices. Soybean (Glycine max L. [Merr.]) dry seeds were launched, activated by hydration, and germinated in the presence of KMnO4 (to remove ethylene) and in its absence onboard the space shuttle Columbia during the STS-87 mission. Primary root apices of 6-day old seedlings were fixed for electron microscopy after landing. Ultrastructural studies indicated that antimonate precipitation appeared as individual electron-dense particles which were more or less round in shape and varied in diameter from 10 nm (minimum size beginning from which the particles were well identified) to 90 nm. It was revealed that analyzed root cap cells varied in both the precipitate particle sizes and the amount particles per unit of the cellular area. In both flight and ground control treatments, antimonate precipitation level increases from apical meristem cells to peripheral (secretory) cells of root apices. In root cap statocytes, subcellular localization of precipitate particles was revealed in the cytoplasm, nucleus and small vacuoles. The quantitative analysis showed a reduction of precipitate density in the cytoplasm and the nucleus, and an increase in precipitate density in the vacuoles from statocytes of both spaceflight treatments in comparison with ground controls.  相似文献   

15.
阐述了利用多刚体系统动力学进行航天员舱外活动仿真EVA(Extra Vehicular Activity)的必要性.给出了应用计算多刚体系统动力学建立的通用失重人体4关节反向运动学与反向动力学模型.选取典型的实例,在对其进行适当简化的基础上,运用通用模型对其进行仿真计算,计算时为考虑失重对人体质量、惯量与力量等参数的影响,对通用模型进行了修正.利用能量比较法对结果进行分析,得出当手部的运动轨迹半径与角速度减小、时间延长,髋关节做前驱运动时航天员工作最为节省能量.通过能量比较法计算得到了人体运动时各关节作功最为节省能量的范围.计算方法对航天员舱内外活动仿真及工效分析有一定的参考价值.   相似文献   

16.
    
针对丘陵山区耕地小型无人机航拍图像(低空遥感图像)中的尺度变化、几何畸变、图像重叠等问题,提出了基于双特征的丘陵山区耕地低空遥感图像配准算法。该算法鉴于丘陵山区耕地背景环境复杂、光照因素等影响,采用尺度不变特征SURF算法提取了遥感图像的特征点,并构建了能够稳健描述航拍图像几何特征的双特征描述子;在此基础上,以高斯混合模型(GMM)为核心,结合2个单一特征差异描述子(基于欧氏距离的全局特征和基于和向量的局部特征)构造的双特征描述子,得到了能够同时通过2种特征进行对应关系评估的双特征有限混合模型(DFMM),并通过再生核希尔伯特空间(RKHS),基于高斯径向基函数(GRBF)对待配准图像进行了全局与局部结构双约束的空间变换更新。为了验证本文算法的可行性及其性能,采用小型无人机航拍的丘陵山区坡耕地多视角遥感图像开展了实验,将本文算法与SIFT、SURF、CPD、AGMReg、GLMDTPS及PRGLS进行了比较。实验结果表明,本文算法不仅在不同坡度的坡耕地航拍图像多视角配准过程中,均具有较好的鲁棒性,也适用于部分复杂地形小型无人机航拍的多视角遥感图像配准。  相似文献   

17.
During the recent ground level enhancement of 13 December 2006, also known as GLE70, solar cosmic ray particles of energy bigger that ∼500 MeV/nucleon propagated inside the Earth’s magnetosphere and finally accessed low-altitude satellites and ground level neutron monitors. The magnitude and the characteristics of this event registered at different neutron monitor stations of the worldwide network can be interpreted adequately on the basis of an estimation of the solar particle trajectories in the near Earth interplanetary space. In this work, an extended representation of the Earth’s magnetic field was realized applying the Tsyganenko 1989 model. Using a numerical back-tracing technique the solar proton trajectories inside the magnetospheric field of the Earth were calculated for a variety of particles, initializing their travel at different locations, covering a wide range of energies. In this way, the asymptotic directions of viewing were calculated for a significant number of neutron monitor stations, providing crucial information on the Earth’s “magnetospheric optics” for primary solar cosmic rays, on the top of the atmosphere, during the big solar event of December 2006. The neutron monitor network has been treated, therefore, as a multidimensional tool that gives insights into the arrival directions of solar cosmic ray particles as well as their spatial and energy distributions during extreme solar events.  相似文献   

18.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   

19.
The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%.  相似文献   

20.
The full potential for making remote observations from space free from atmospheric attenuations and distortions may not be realized due to the residual environment surrounding orbital experiments: particulates could overwhelm or severely complicate remote astronomical or atmospheric sounding observations. Small particles are lifted into space by the observatory and its carrier and take considerable time to evolve from surfaces. Single near-field particles have been observed which produce irradiance levels larger than the brightest stars and brighter than the emission from the entire earth limb airglow layer.The existing data bases are reviewed including: 1) the low light level camera videotape data of STS-3 in which large persistent particles were observed; 2) the data from the stereo cameras which were part of the Induced Environmental Contamination Monitor pallet assembled by NASA Marshall - which is being analyzed to obtain particle number densities, trajectories, and decay times; and 3) data from the Particle Analysis Camera for Shuttle which was part of the HITCHHIKER pallet on a January 1986 Mission is current being analyzed to obtain decay rates and correlations with orbital activities. The implications for several other data bases such as the Infrared Telescope is also described.The analysis of these spectrally broad band observations is further complicated by the nature of the particle's scattering of light. Depending on wavelength and particle size, the scattering of solar radiation or earth radiation, or particle self emission will dominate the optical signature. The scattering and emission from particulates will likely be highly structured as a function of wavelength. We present Mie scattering calculations for particle size distributions observed on-orbit. Finally, we assess the consequences of the observations and calculations on future space-based observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号