共查询到20条相似文献,搜索用时 15 毫秒
1.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) 总被引:2,自引:0,他引:2
W. L. Imhof K. A. Spear J. W. Hamilton B. R. Higgins M. J. Murphy J. G. Pronko R. R. Vondrak D. L. McKenzie C. J. Rice D. J. Gorney D. A. Roux R. L. Williams J. A. Stein J. Bjordal J. Stadsnes K. Njoten T. J. Rosenberg L. Lutz D. Detrick 《Space Science Reviews》1995,71(1-4):385-408
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities. 相似文献
2.
G. L. Tyler I. R. Linscott M. K. Bird D. P. Hinson D. F. Strobel M. Pätzold M. E. Summers K. Sivaramakrishnan 《Space Science Reviews》2008,140(1-4):217-259
The New Horizons (NH) Radio Science Experiment, REX, is designed to determine the atmospheric state at the surface of Pluto and in the lowest few scale heights. Expected absolute accuracies in n, p, and T at the surface are 4?1019 m?3, 0.1 Pa, and 3 K, respectively, obtained by radio occultation of a 4.2 cm-λ signal transmitted from Earth at 10–30 kW and received at the NH spacecraft. The threshold for ionospheric observations is roughly 2?109 e??m?3. Radio occultation experiments are planned for both Pluto and Charon, but the level of accuracy for the neutral gas is expected to be useful at Pluto only. REX will also measure the nightside 4.2 cm-λ thermal emission from Pluto and Charon during the time NH is occulted. At Pluto, the thermal scan provides about five half-beams across the disk; at Charon, only disk integrated values can be obtained. A combination of two-way tracking and occultation signals will determine the Pluto system mass to about 0.01 percent, and improve the Pluto–Charon mass ratio. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. Implementation of REX required realization of a new CIC-SCIC signal processing algorithm; the REX hardware implementation requires 1.6 W, and has mass of 160 g in 520 cm3. Commissioning tests conducted after NH launch demonstrate that the REX system is operating as expected. 相似文献
3.
The Electric Field Instrument (EFI) for THEMIS 总被引:2,自引:0,他引:2
J. W. Bonnell F. S. Mozer G. T. Delory A. J. Hull R. E. Ergun C. M. Cully V. Angelopoulos P. R. Harvey 《Space Science Reviews》2008,141(1-4):303-341
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes. 相似文献
4.
Measurements of radiation levels at Mars including the contributions of protons, neutrons, and heavy ions, are pre-requisites for human exploration. The MARIE experiment on the Mars-01 Odyssey spacecraft consists of a spectrometer to make such measurements in Mars orbit. MARIE is measuring the galactic cosmic ray energy spectra during the maximum of the 24th solar cycle, and studying the dynamics of solar particle events and their radial dependence in orbit of Mars. The MARIE spectrometer is designed to measure the energy spectrum from 15 to 500 MeV/n, and when combined other space based instruments, such as the Advanced Composition Explorer (ACE), would provide accurate GCR spectra. Similarly, observations of solar energetic particles can be combined with observations at different points in the inner heliosphere from, for example, the Solar Heliospheric Observatory (SOHO), to gain information on the propagation and radial dependence in the Earth-Mars space. Measurements can be compared with the best available radiation environment and transport models in order to improve these models for subsequent use, and to provide key inputs for the engineering of spacecraft to better protect the human crews exploring Mars. 相似文献
5.
D. T. Young J. E. Nordholt J. L. Burch D. J. McComas R. P. Bowman R. A. Abeyta J. Alexander J. Baldonado P. Barker R. K. Black T. L. Booker P. J. Casey L. Cope F. J. Crary J. P. Cravens H. O. Funsten R. Goldstein D. R. Guerrero S. F. Hahn J. J. Hanley B. P. Henneke E. F. Horton D. J. Lawrence K. P. McCabe D. Reisenfeld R. P. Salazar M. Shappirio S. A. Storms C. Urdiales J. H. Waite Jr. 《Space Science Reviews》2007,129(4):327-357
The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron
spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view
and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel
technologies that helped reduce instrument mass to 5.5 kg and average power to 9.6 W. PEPE’s performance was demonstrated
successfully by extensive measurements made in the solar wind and during the DS1 encounter with Comet 19P/Borrelly in September
2001.
P. Barker is deceased. 相似文献
6.
7.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
8.
9.
The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP 总被引:2,自引:0,他引:2
C. A. Kletzing W. S. Kurth M. Acuna R. J. MacDowall R. B. Torbert T. Averkamp D. Bodet S. R. Bounds M. Chutter J. Connerney D. Crawford J. S. Dolan R. Dvorsky G. B. Hospodarsky J. Howard V. Jordanova R. A. Johnson D. L. Kirchner B. Mokrzycki G. Needell J. Odom D. Mark R. Pfaff Jr. J. R. Phillips C. W. Piker S. L. Remington D. Rowland O. Santolik R. Schnurr D. Sheppard C. W. Smith R. M. Thorne J. Tyler 《Space Science Reviews》2013,179(1-4):127-181
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected. 相似文献
10.
Tomasko M.G. Buchhauser D. Bushroe M. Dafoe L.E. Doose L.R. Eibl A. Fellows C. Farlane E. M Prout G.M. Pringle M.J. Rizk B. See C. Smith P.H. Tsetsenekos K. 《Space Science Reviews》2002,104(1-4):469-551
The payload of the Huygens Probe into the atmosphere of Titan includes the Descent Imager/Spectral Radiometer (DISR). This
instrument includes an integrated package of several optical instruments built around a silicon charge coupled device (CCD)
detector, a pair of linear InGaAs array detectors, and several individual silicon detectors. Fiber optics are used extensively
to feed these detectors with light collected from three frame imagers, an upward and downward-looking visible spectrometer,
an upward and downward looking near-infrared spectrometer, upward and downward looking violet phtotometers, a four-channel
solar aerole camera, and a sun sensor that determines the azimuth and zenith angle of the sun and measures the flux in the
direct solar beam at 940 nm. An onboard optical calibration system uses a small lamp and fiber optics to track the relative
sensitivity of the different optical instruments relative to each other during the seven year cruise to Titan. A 20 watt lamp
and collimator are used to provide spectrally continuous illumination of the surface during the last 100 m of the descent
for measurements of the reflection spectrum of the surface. The instrument contains software and hardware data compressors
to permit measurements of upward and downward direct and diffuse solar flux between 350 and 1700 nm in some 330 spectral bands
at approximately 2 km vertical resolution from an alititude of 160 km to the surface. The solar aureole camera measures the
brightness of a 6° wide strip of the sky from 25 to 75° zenith angle near and opposite the azimuth of the sun in two passbands
near 500 and 935 nm using vertical and horizontal polarizers in each spectral channel at a similar vertical resolution. The
downward-looking spectrometers provide the reflection spectrum of the surface at a total of some 600 locations between 850
and 1700 nm and at more than 3000 locations between 480 and 960 nm. Some 500 individual images of the surface are expected
which can be assembled into about a dozen panoramic mosaics covering nadir angles from 6° to 96° at all azimuths. The spatial
resolution of the images varies from 300 m at 160 km altitude to some 20 cm in the last frames. The scientific objectives
of the experiment fall into four areas including (1) measurement of the solar heating profile for studies of the thermal balance
of Titan; (2) imaging and spectral reflection measurements of the surface for studies of the composition, topography, and
physical processes which form the surface as well as for direct measurements of the wind profile during the descent; (3) measurements
of the brightness and degree of linear polarization of scattered sunlight including the solar aureole together with measurements
of the extinction optical depth of the aerosols as a function of wavelength and altitude to study the size, shape, vertical
distribution, optical properties, sources and sinks of aerosols in Titan's atmosphere; and (4) measurements of the spectrum
of downward solar flux to study the composition of the atmosphere, especially the mixing ratio profile of methane throughout
the descent. We briefly outline the methods by which the flight instrument was calibrated for absolute response, relative
spectral response, and field of view over a very wide temperature range. We also give several examples of data collected in
the Earth's atmosphere using a spare instrument including images obtained from a helicopter flight program, reflection spectra
of various types of terrain, solar aureole measurements including the determination of aerosol size, and measurements of the
downward flux of violet, visible, and near infrared sunlight. The extinction optical depths measured as a function of wavelength
are compared to models of the Earth's atmosphere and are divided into contributions from molecular scattering, aerosol extinction,
and molecular absorption. The test observations during simulated descents with mountain and rooftop venues in the Earth's
atmosphere are very important for driving out problems in the calibration and interpretion of the observations to permit rapid
analysis of the observations after Titan entry.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
PIV测速技术实验参数分析 总被引:2,自引:0,他引:2
本文通过理论分析、计算机模拟及实验观测,对采用底片记录和杨氏条纹法判读的PIV测速技术的动态测量范围、各种实验参数的影响及其优化取值准则进行了详细的分析讨论,并给出了一些有关的理论及经验公式。 相似文献
12.
13.
14.
岳彩军 《郑州航空工业管理学院学报(管理科学版)》2007,25(1):44-47
运用经济学理论对我国沿海地区产业集群发展的经验进行分析,结果表明,地区产业集群的形成是政府采取不平衡发展战略的结果,具有比较优势的主导产业又是形成产业集群网络式的、具有不断创新能力特征的主要依托,完善的市场运行机制、良好的投资环境是产业集群发挥极化效应、扩展效应和回程效应的基础,同时又是带动区域经济发展的动力。 相似文献
15.
河南省产业集群与城市经济的关系研究 总被引:1,自引:0,他引:1
随着产业集群的不断发展,其对城市经济的影响越来越显著,对两者之间关系的研究势在必行。文章运用回归分析法对城市经济与产业集群之间的关系进行定量研究,认为二者的关系主要体现在以下几个方面:(1)产业集群可以有效促进城市经济发展;(2)产业集群内组织间联系紧密程度决定其对城市经济发展的潜在贡献;(3)产业集群对城市经济的促进依赖于政府的支持程度;(4)产业集群对城市经济的促进依赖于城市人文环境。文章的研究为河南省制定城市经济发展战略、促进产业集群发展提供了量化依据。 相似文献
16.
V. A. Sadovnichii V. V. Alexandrov D. I. Bugrov S. S. Lemak V. B. Pakhomov M. I. Panasyuk V. L. Petrov I. V. Yashin 《Space Science Reviews》2018,214(2):51
The IMISS-1 experiment represents the second step in solving the problem of the creation of the gaze stabilization corrector. This device is designed to correct the effect of the gaze stabilization delay under microgravity. IMISS-1 continues research started by the Tat’yana-2 satellite. This research will be continued on board the International Space Station. At this stage we study the possibility of registration of angular and linear accelerations acting on the sensitive mass in terms of Low Earth Orbit flight, using MEMS sensors. 相似文献
17.
D. G. Mitchell L. J. Lanzerotti C. K. Kim M. Stokes G. Ho S. Cooper A. Ukhorskiy J. W. Manweiler S. Jaskulek D. K. Haggerty P. Brandt M. Sitnov K. Keika J. R. Hayes L. E. Brown R. S. Gurnee J. C. Hutcheson K. S. Nelson C. M. Hammock N. Paschalidis E. Rossano S. Kerem 《Space Science Reviews》2013,179(1-4):309-309
18.
基于有限元法的电磁铁磁场的计算机定量分析 总被引:1,自引:1,他引:1
随着工程领域中对电磁铁磁场分析的计算精度要求的不断提高,要求有新的数值分析方法以适应这一需求,有限元法即是符合这一需求的分析方法。主要阐述了应用有限元法分析数字阀电磁铁问题的基本思想,并运用该方法对产品前期设计进行了精密的计算和性能预测,节省了大量的设计费用,经济可比性较高。 相似文献
19.
文章通过对两种不同企业集群组织形式的比较,重点探讨了形成企业竞争优势的企业虚拟组织的机理及结构功能.以关系型同质中小企业集群为研究对象,基于供应链虚拟一体化的思路,对其竞争优势进行研究,同时提出这种组织模式可能存在的潜在问题并加以理论上的证明,力求找到适合我国中小企业现状的发展之路. 相似文献
20.
The Magnetic Field of Mercury 总被引:1,自引:0,他引:1
Brian J. Anderson Mario H. Acuña Haje Korth James A. Slavin Hideharu Uno Catherine L. Johnson Michael E. Purucker Sean C. Solomon Jim M. Raines Thomas H. Zurbuchen George Gloeckler Ralph L. McNutt Jr. 《Space Science Reviews》2010,152(1-4):307-339
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation. 相似文献