共查询到20条相似文献,搜索用时 15 毫秒
1.
L. F. Burlaga 《Space Science Reviews》1984,39(3-4):255-316
Conclusion Much has been learned about the structure and dynamics of the outer heliosphere during the last decade as a result observations from the Voyager and Pioneer spacecraft. The large scale of the observations forces one to consider the heliosphere from a new perspective, to think of new dynamical processes, and to introduce new concepts. The early studies of isolated gas dynamic flows must be replaced by MHD dynamics of interacting flows and flow systems. The simple deterministic models that have been dominant in early studies of the solar wind are now seen to have limited applicability, and statistical approaches are being developed. New concepts that have been introduced, such as inverse cascades, filtering, entrainment, etc., must be further explored and clarified, to make them more precise and quantitative. MHD turbulence is probably very important in solar wind dynamics, but the subject is poorly developed from a theoretical point of view. The statistical analysis of solar wind parameters has scarcely begun, but it is clearly necessary for an understanding of complex, large-scale flows. The multitude of possible interactions among shocks and flows of various types needs to be explored systematically with observations, models and analytical theory. Voyagers 1 and 2 and Pioneers 10 and 11 are continuing to move through the outer heliosphere and gather data. The lengthy data reduction procedures require even more care in dealing with the low field strengths, densities and temperatures at large heliocentric distances, and the analysis of the complex flows and fields in the outer heliosphere becomes increasingly difficult. Thus one can expect continued growth of our knowledge of the heliosphere, but comprehensive understanding of the data will take some time. If this review stimulates the specialists in solar wind physics to think critically about the results presented and to remedy the deficiencies of current knowledge of the heliosphere, then it will have served its purpose. It is also hoped that this review will serve to encourage specialists in other fields to bring their talents to bear on heliospheric problems and to transfer results of heliospheric physics to their fields. 相似文献
2.
For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz, Two major events have been observed, the first in 1983–84 and the second in 1992–93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May–June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f
p
) and at twice the plasma frequency (2f
p
). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.Abbreviations PWS
Plasma Wave Subsystem
- AU
Astronomical Unit
- DSN
Deep Space Network
- NASA
National Aeronautics and Space Administration
- GMIR
Global Merged Interaction Region
- MHD
Magnetohydrodynamic
- CME
coronal mass ejection
-
f
p
plasma frequency
- R
radial distance
- AGC
automatic gain control 相似文献
3.
Wiesław M. Macek 《Space Science Reviews》1996,76(3-4):231-250
The question of how low-frequency radio emissions in the outer heliosphere might be generated is considered. It is argued that the free energy contained in an electron beam distribution is first transformed into electrostatic Langmuir waves. The nonlinear interactions of these waves which can produce electromagnetic waves are then treated in the semi-classical formalism. Comparison of the results of the discussed model with electromagnetic radiation coming from upstream of the Earth's bow shock shows that the model adequately explains the generation of plasma waves at planetary shocks. By analogy, this model can provide a quantitative explanation of intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The field strength of Langmuir waves required to generate the second harmonic emissions are approximately of 100–200 V m–1 for the primary and 50–100 V m–1 for the secondary foreshocks. However, only in the secondary foreshock the expected density is consistent with the observed frequency. 相似文献
4.
E. C. Stone R. E. Vogt F. B. McDonald B. J. Teegarden J. H. Trainor J. R. Jokipii W. R. Webber 《Space Science Reviews》1977,21(3):355-376
A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from 3–110 MeV and the energy spectra and elemental composition of all cosmic-ray nuclei from hydrogen through iron over an energy range from 1–500 MeV/nuc. Isotopes of hydrogen through sulfur will be resolved from 2–75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.Principal Investigator of the Voyager Cosmic Ray Experiment. 相似文献
5.
We calculate the conditions of pickup protons inside the termination shock. Outside 50 AU the partial pressure of pickup protons is greater than the magnetic pressure by a factor of > 10, and greater than the partial pressure of solar wind protons by a factor of > 100. Thus, pickup protons have a significant dynamical influence on the structures of the solar wind in the outer heliosphere. 相似文献
6.
R. W. Fredricks 《Space Science Reviews》1975,17(6):741-780
Summary In summarizing the importance of wave-particle interactions to the geophysical understanding of phenomena in the outer magnetosphere, one can point to the successes and deficiencies of theoretical explanations based on such interactions. A fair assessment of this sort is attempted below. 相似文献
7.
José F. Valdés-Galicia 《Space Science Reviews》1992,62(1-2):67-93
It is the purpose of this review to summarize and discuss recent research done in the field of particle propagation in the heliosphere. Several lines of approach have been followed to treat this problem. As a starting point the different forms of the transport equation are discussed. Quasi-Linear Theory (QLT) relates the power contained in fluctuations of the Interplanetary Magnetic Field (IMF) to the transport coefficients of energetic particles, an outline of the basic results of this theory is presented followed by a discussion of subsequent corrections made to the original formulation with an emphasis in recent developments where the effects of wave polarization, its propagation respect to the solar wind and the dissipation of power at large frequencies have been taken into account. The numerical approach using test particle trajectory integrations to obtain transport coefficients based on in situ satellite measureents is also discussed. It is well known that the determination of the particles mean free path for solar particle events by alternative methods leads to conflicting results, corrections made to original QLT are attempts to bridge the gap. Determination of the transport parameters from different lines of approach in a comparative basis have been done recently by calculating power spectra of IMF measured at the time solar particles were detected on the same spaceprobe, and performing numerical simulations with equivalent IMF data. Some of the results of such studies point to the solution of the conflicting determinations of the mean free path which has existed for nearly 30 years. An assesment of the present situation in this respect is given. Numerical determinations of transport parameters in the outer heliosphere are also reviewed and its consequences for solar modulation of galactic cosmic rays discussed. Space Science Reviews 62: Printed in Belgium. 相似文献
8.
Particle acceleration at the Sun and in the heliosphere 总被引:24,自引:0,他引:24
Donald V. Reames 《Space Science Reviews》1999,90(3-4):413-491
Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample many populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be ‘seen’ only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics of the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
J. L. Culhane 《Space Science Reviews》1995,72(1-2):17-28
Designed primarily to study solar activity, Yohkoh includes an X-ray telescope that obtains full-sun coronal images which show a range of features. Coronal X-ray emission-exclusive of flares, is notable for its variability even in the largest structures. A mass ejection event is related to magnetic field reconnection. Such events exhibit both accelerated and decelerated behaviour. Coronal hole temperatures are estimated from the filter ratio method. A plasma component at around 2.106 K is identified. X-ray emission is detected from the South polar coronal hole. A preliminary comparison of Spartan coronagraph images with Yohkoh data suggests that polar plumes or rays are not connected to bright points. 相似文献
10.
The detailed knowledge of the distribution of neutral interstellar hydrogen in the interplanetary space is necessary for a reliable interpretation of optical and H+ pickup ions observations. In the paper, we review the status of the modelling efforts with the emphasis on recent improvements in that field. We discuss in particular the role of the nonstationary, solar cycle-related effects and the consequences of hydrogen filtration through the heliospheric interface region for its distribution in the inner Solar System. We demonstrate also that the use of the simple cold model, neglecting the thermal character of the hydrogen gas (T 8000 K), is generally incorrect for the whole region of the inner heliosphere (R < 5 AU) since it leads to a substantial underestimation of the local hydrogen density and thus influences the derivation of the H properties in the outer heliosphere/LISM. Referring to recent Ulysses measurements, we point out also the need to consider in the modelling the effects of the latitudinal asymmetry of the ionization rate. 相似文献
11.
This paper examines the Shock/Shock Interactions (SSI) between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND) finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. 相似文献
12.
A critical review of the interstellar hydrogen in the heliosphere will be presented. Recent Sun-interstellar matter interaction model improvements, a non-stationary flow and a flexible latitude dependence, will be discussed. We also consider the influence of heliospheric interface on neutral flow and the remaining refinements, which could help to better interpret the results of the SWAN experiment on board SOHO. 相似文献
13.
L. A. Fisk 《Space Science Reviews》1995,72(1-2):5-13
The 28th ESLAB Symposium marks the beginning of the sprint of the Ulysses mission to the very high heliographic latitudes and the pole-to-pole passage. The more than twenty-year quest to understand the Sun and the heliosphere in three dimensions is about to be realized. It is perhaps worthwhile, as we are poised to begin this journey, to ask how history is likely to judge this mission, or equivalently: what questions need to be answered so that the judgment will be kind? 相似文献
14.
R. Lallement 《Space Science Reviews》1996,78(1-2):361-374
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue). 相似文献
15.
B. Klecker 《Space Science Reviews》1995,72(1-2):419-430
More than 20 years ago, in 1972, anomalous flux increases of helium and heavy ions were discovered during solar quiet times. These flux increases in the energy range<50 MeV/nucleon showed peculiar elemental abundances and energy spectra, e.g. a C/O ratio0.1 around 10 MeV/nucleon, different from the abundances of solar energetic particles and galactic cosmic rays. Since then, this anomalous cosmic ray component (ACR) has been studied extensively and at least six elements have been found (He,N,O,Ne,Ar,C) whose energy spectra show anomalous increases above the quiet time solar and galactic energetic particle spectrum. There have been a number of models proposed to explain the ACR component. The presently most plausible theory for the origin of ACR ions identifies neutral interstellar gas as the source material. After penetration into the inner heliosphere, the neutral particles are ionized by solar UV radiation and by charge exchange reactions with the solar wind protons. After ionization, the now singly charged ions are picked up by the interplanetary magnetic field and are then convected with the solar wind to the outer solar system. There, the ions are accelerated to high energies, possibly at the solar wind termination shock, and then propagate back into the inner heliosphere. A unique prediction of this model is that ACR ions should be singly ionized. Meanwhile, several predictions of this model have been verified, e.g. low energy pick-up ions have been detected and the single charge of ACR ions in the energy range at MeV/nucleon has been observed. However, some important aspects such as, for example, the importance of drift effects for the acceleration and propagation process and the location of the acceleration site are still under debate. In this paper the present status of experimental and theoretical results on the ACR component are reviewed and constraints on the acceleration process derived from the newly available ACR ionic charge measurements will be presented. Possible new constraints provided by correlative measurements at high and low latitudes during the upcoming solar pole passes of the ULYSSES spacecraft in 1994 and 1995 will be discussed. 相似文献
16.
17.
We use energy spectra of anomalous cosmic rays (ACRs) measured with the Cosmic Ray instrument on the Voyager 1 and 2 spacecraft during the period 1994/157-313 to determine several parameters of interest to heliospheric studies. We estimate that the strength of the solar wind termination shock is 2.42 (–0.08, +0.04). We determine the composition of ACRs by estimating their differential energy spectra at the shock and find the following abundance ratios: H/He = 5.6 (–0.5, +0.6), C/He = 0.00048 ± 0.00011, N/He = 0.011 ± 0.001, O/He = 0.075 ± 0.006, and Ne/He = 0.0050 ± 0.0004. We correlate our observations with those of pickup ions to deduce that the long-term ionization rate of neutral nitrogen at 1 AU is 8.3 × 10–7 s–1 and that the charge-exchange cross section for neutral N and solar wind protons is 1.0 × 10–15 cm2 at 1.1 keV. We estimate that the neutral C/He ratio in the outer heliosphere is 1.8(–0.7, +0.9) × 10–5. We also find that heavy ions are preferentially injected into the acceleration process at the termination shock. 相似文献
18.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium. 相似文献
19.
This paper summarizes some of the discussions of working group 8–9 during the ISSI Conference on The Heliosphere in the Local Interstellar Medium. Because the subject of these working groups has become significantly broader during the last ten years, we have selected three topics for which recent observations have modified and improved our knowledge of the heliosphere and the surrounding interstellar medium. These topics are the number densities and ISM ionization states of hydrogen and helium, the newly discovered hot gas from the H wall seen in absorption, and the comparison between ISM and heliospheric minor element abundances. Papers from this volume in which more details on these topics can be found are quoted throughout the report. 相似文献
20.
The understanding of the relative intensity variations in cosmic ray ions and electrons with respect to solar modulation is a grand challenge for cosmic ray modulation theory. Although effects of the heliospheric neutral sheet, gradient-curvature drifts, and merged interaction regions provide qualitative explanations for observed solar cycle variations of high energy protons and ions, these effects do not account for the anomalously high intensities of high energy galactic electrons at 22-year intervals of the solar magnetic solar cycle. From the similar modulation responses of protons and heavy ions it does not appear that cosmic ray pressure effects, dominated by protons, can account for the chargesign asymmetry of cosmic ray modulation. External factors including modulation in the heliosheath and polar linkage to the interstellar magnetic field are examined as potential causes of symmetry breaking for electron modulation with respect to the solar magnetic polarity at solar minimum. 相似文献