首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
由于车轨悬浮间隙的存在,高速磁浮列车的悬浮架周围流场紊乱且气动力复杂,影响列车的悬浮和导向性能。基于计算流体力学建立了3车编组的高速磁浮列车气动数值仿真模型,研究了列车气动特性及车轨间隙和悬浮架周围的流场结构,分析了3种不同形式的导流装置(板式、短楔形、长楔形)对列车气动特性的影响规律。研究结果表明:在500 km/h的运行速度下,气流通过头车鼻尖底部悬浮间隙直接冲击在头车一位端悬浮架迎风侧,形成的压差阻力使头车气动阻力大幅增大;受悬浮架扰流影响,气流在车体底部形成了大面积的正压区,直接导致头车气动升力和气动力矩大幅提高且远高于中间车及尾车气动升力。根据研究结果,改变头车鼻尖底面结构,控制进入车轨磁浮间隙的气流流量和方向,改善了列车表面压力分布情况,协同降低了列车气动阻力、气动升力和点头力矩。与原型磁浮列车相比,3种导流装置均能实现减阻降升,其中气动特性优化效果最好的长楔形导流装置可实现减小整车气动阻力3.6%、头车气动升力40.6%和头车点头力矩80.3%,综合气动性能最好。  相似文献   

2.
旋翼非定常气动载荷及瞬态气动响应计算   总被引:1,自引:0,他引:1  
建立了一个用于定常和机动飞行状态下旋翼非定常气动特性计算的数值方法。该方法在时间步进自由尾迹方法的基础上,采用4阶精度的Adams-Bashforth-Moulton预测校正多步法对离散的旋翼尾迹进行求解,耦合了桨叶挥舞运动模型、旋翼配平模型,并采用Beddoes非定常气动模型来模拟桨叶的压缩、气流分离效应。应用该方法,开展了不同状态下旋翼非定常载荷及总距突增时的旋翼瞬态气动响应的计算,并结合试验结果进行了对比分析。结果表明,本文建立的方法不仅可以准确地求解定常飞行时旋翼的非定常气动载荷,捕捉其沿方位角的变化特征,并且也可以准确模拟总距突增时,旋翼的过冲、迟滞等瞬态气动响应过程。  相似文献   

3.
基于非定常气动模型的翼型动态响应计算   总被引:2,自引:0,他引:2  
基于附着流状态下的旋翼非定常翼型气动模型,给出了计算该状态下的翼型非定常升力、阻力和俯仰力矩的数值计算方法。该方法采用半经验指数响应公式,将响应分为环量和非环量载荷部分,利用数值离散来得到非定常气动响应。应用该方法,分别进行了法向力、弦向力和俯仰力矩等的算例计算,并与可得到的试验数据进行了对比,验证了方法的有效性。同时,还对缩减频率和马赫数对法向力和俯仰力矩的影响进行了计算和分析,得出了一些结论。  相似文献   

4.
采用风洞试验的方法,分别对高速列车试验模型2~6车编组状态下的各节车厢气动阻力的分布规律,以及2种不同结构外形的风挡对3车编组列车模型各节车厢气动阻力的影响进行了研究.结果表明:当编组长度大于3车,头车、尾车的阻力系数随编组长度的增加变化较小,中间车的阻力系数约为0.1.1节头车+N节中间车+1节尾车的全车气动阻力系数,可用3车编组模型试验的头车阻力系数+0.1×N+尾车阻力系数之和进行估算.高速列车风洞试验模型分别采用风挡1和风挡2两种风挡,只是使得气动阻力在各节车厢之间形成不同的分配,对由各节车厢相加形成的全车气动阻力的试验结果影响很小.  相似文献   

5.
阐述了对我国首列200km/h动力分散型电动旅客列车组(先锋号列车)车体表面压力分布测试情况,对测量结果进行了较为详细的分析,最后用流场计算软件CFX对先锋号列车周围流场进行了数值模拟计算,并将计算结果与测量结果进行了对比,两者有较好的一致性。该研究结果可为空调装置及电器设备冷却风道进排风口位置的选取提供科学依据。  相似文献   

6.
在波瓣引射器一次引射掺混后,提出利用旋翼下洗气流对弯曲混合管排气进行二次强迫混合的红外抑制器结构,并对该红外抑制器进行了有关流动混合特性的实验和数值研究,获得了主流和引射气流、下洗气流相互混合过程中,混合管内部及抑制器出口处的温度场和压力场等相关信息,以及表征引射-混合系统总体性能的引射系数等参数。结果表明:引入下洗气流可以改善出口分布的不均匀性,经过波瓣喷管引射器泵吸周围空气掺混冷却和利用旋翼下洗气流进行二次冷却,可以有效使排气温度降低50%。  相似文献   

7.
超声速进气道正常工作时,超声速来流经过斜激波与正激波的减速增压作用转变成亚音速气流,在这个过程里,通常伴随着边界层分离以及激波等复杂的流动现象。当达到一定的条件时,在进气道内会形成激波串结构,并形成一定强度的脉动压力载荷。本文基于雷诺平均N-S方程法(RANS),模拟了某超声速进气道非定常复杂流动,通过数值模拟捕捉到了该超声速进气道内收缩段流场的激波串结构,获得了进气道下壁面脉动压力载荷沿此进气道纵向的分布规律,为超声速进气道的载荷与环境分析提供了技术支撑。  相似文献   

8.
位于高速列车车体下部区域的通风口格栅与设备舱壁面构成格栅–空腔结构,列车高速运行时,该结构的流声耦合问题较为突出,有必要深入分析其流声耦合机理。将位于车体下部区域的带格栅裙板简化为带格栅的二维空腔模型(格栅–空腔结构),采用延迟分离涡数值模型(Delayed Detached Eddy Simulation, DDES)研究其气动噪声产生机理、流场和声场特性等。研究结果表明:当列车以400 km/h速度运行时,格栅–空腔结构开口处的剪切振荡较为剧烈,特别是空腔冲击边缘附近区域;基于总声压级的空间、频域分布和湍流压力波数–频率谱,发现形格栅–空腔结构的流场始终处于自激振荡的过渡状态,且各位置的总声压级和波数域上的振荡幅值始终低于V形格栅–空腔结构和半圆环形格栅–空腔结构;对目前常用的半圆环形带格栅裙板考虑通风口的出风作用后,观察到空腔内部的涡团演化明显减缓,直接导致格栅附近的总声压级大幅下降约15 d B,表明出风作用能够显著降低带裙板格栅的近场噪声。  相似文献   

9.
一个计算旋翼/机身/尾迹间非定常气动干扰的分析方法是建立在二阶升力线/全展自由涡模型和机身面元模型基础之上的。通过迭代机身在桨盘平面、尾迹定位点的诱导速度和旋翼/尾迹在机身表面的诱导速度,形成一个耦合的分析模型。在分析中计入了非定常项。作为算例,对两种孤立机身表面的平均压强系数分布以及旋翼机身组合体中机身表面的非定常压强系数分布进行了计算,其结果与实验值相吻合。  相似文献   

10.
为了掌握刚性直升机旋翼在高速飞行条件下的关键气动特性,本文通过求解三维非定常雷诺平均N-S(Reynolds-averaged Navier-Stokes, RANS)方程并基于多块结构化网格有限体积方法(Finite volume method, FVM)对直升机旋翼悬停及前飞状态的复杂绕流流场进行了数值模拟,讨论了动态流动分离、展向流动影响及反流等复杂气动特性的影响。分析了旋翼总距对气动载荷的影响及后行阶段的非定常反流效应,并分别揭示了该旋翼在悬停和大速度前飞状态下显著不同的气动力规律。数值计算表明,悬停状态该旋翼拉力值随总距线性增大,而在大前进比(Advancing ratio, AR)飞行时,其后行侧桨叶根部反流导致截面非常规压力分布,拉力主要由前行侧桨叶提供。数值预测结果与风洞试验结果的比较显示了良好的一致性。  相似文献   

11.
为了掌握刚性直升机旋翼在高速飞行条件下的关键气动特性,本文通过求解三维非定常雷诺平均N-S(Reynolds-averaged Navier-Stokes,RANS)方程并基于多块结构化网格有限体积方法(Finite volume method,FVM)对直升机旋翼悬停及前飞状态的复杂绕流流场进行了数值模拟,讨论了动态流动分离、展向流动影响及反流等复杂气动特性的影响。分析了旋翼总距对气动载荷的影响及后行阶段的非定常反流效应,并分别揭示了该旋翼在悬停和大速度前飞状态下显著不同的气动力规律。数值计算表明,悬停状态该旋翼拉力值随总距线性增大,而在大前进比(Advancing ratio,AR)飞行时,其后行侧桨叶根部反流导致截面非常规压力分布,拉力主要由前行侧桨叶提供。数值预测结果与风洞试验结果的比较显示了良好的一致性。  相似文献   

12.
详细论述了一种适用于叶轮机叶片气动弹性基础性研究的实验技术--影响系数法.以一种简单的方式考虑叶片与叶片之间的气动耦合效应,从而获得叶盘耦合系统在不同叶片间相位角下,叶片表面非定常气动响应(非定常压力和非定常气动功),用于气动弹性机理性研究并校核数值模拟程序.指出影响系数法气动弹性基础实验与传统气动弹性实验的区别,介绍了国外以及作者已经取得的研究成果,其中也涉及到高低速不同流动状态下,叶片表面非定常压力测量的实验设备.通过这一综述,以期推动国内叶轮机气动弹性基础实验的开展,为正在发展的气动弹性数值模拟工具提供详细、有效的实验验证数据.  相似文献   

13.
飞机阻力伞工作过程中,往往飞机发动机仍未停机,高速发动机喷流会对阻力伞流场产生影响,进而影响阻力伞的工作性能。针对发动机喷流对阻力伞的影响,本文采用流固耦合方法对不同喷流速度下的阻力伞动态开伞过程进行数值仿真,分析了不同喷流速度对阻力伞阻力特性、阻力伞稳定性以及流场特性的影响。研究发现,发动机喷流会使阻力伞前的气流速度变大,从而导致阻力伞动载峰值变大,充满状态的稳态载荷变大,动载峰值出现时刻前移。在本文计算工况下,当发动机喷流速度为250 m/s时,阻力伞充满状态稳态载荷增加21%;当喷流速度为350 m/s时,阻力伞充满状态稳态载荷增加51%;当喷流速度为500 m/s时,阻力伞充满状态稳态载荷增加79%。同时,发动机喷流会使得伞衣内侧下方的压力偏大,导致伞衣压力分布不对称,从而使得阻力伞发生上下摆动,且喷流速度越大,阻力伞摆动振幅越大,阻力伞稳定性越差。  相似文献   

14.
施加非定常气流脉动激励将大幅度减少叶栅分离损失。而激励的效果与本身的气流脉动频率以及强度等因素有关。为了考察非定常气流脉动激励对叶栅气流分离的作用,以及激励作用效果最佳时激励脉动频率与叶栅分离旋涡脱落频率之间的关系,进行了叶栅分离旋涡脱落频率的测量。实验在环形叶栅实验台上进行,利用IFA300热线风速仪等测试仪器进行实验,分析了不同实验条件下环形扩压叶栅后流动脉动的分布情况。结果表明,在不同迎角以及不同测量位置处(叶中和端壁压),所测环形扩压叶栅后的流动分离均存在某一特征频率。此外对导流叶栅后和环形扩压叶栅后的流动情况的对比说明了在叶轮机械非定常流中流动分离频率的锁定(lockon)现象[1]。  相似文献   

15.
旋翼与紊流场干扰噪声计算   总被引:1,自引:1,他引:1  
本文给出了旋翼与紊流场相互作用产生噪声的理论计算方法。该方法从翼型段在紊流场中作直线运动时的噪声计算分析出发,由理论分析推广到旋翼旋转运动的情况,其中考虑了桨叶上非定常载荷的弦向及展向的非紧致性,叶-叶载荷之间的相关,特别是考虑了由旋翼运动造成的素流场畸变所引起的非各向同性和非均匀性。本文计算了一架模型直升机在"准悬停"状态下紊流场的畸变以及相应的干扰噪声谱,并对考虑畸变与非畸变、均匀畸变与非均匀畸变的结果作了比较。结果表明,紊流场的收缩畸变对干扰噪声有显著影响,并对此给出了合理的解释。  相似文献   

16.
方背Ahmed模型是一种简化的商用车类车体模型,气流在尾部发生分离形成回流区,使背部产生负压继而带来较大的气动阻力。利用风洞实验对1/4缩比的方背Ahmed模型的非定常尾迹进行了精细测量和统计分析,实验雷诺数为9.2×104。背部压力、粒子图像测速(PIV)和热线测量结果表明方背Ahmed模型的非定常尾迹呈现出3种流动特征的相互耦合:左右涡结构不对称分布的双稳态特征、水平以及垂直方向的涡脱落和回流区的周期性抽吸。其中双稳态现象在非定常尾迹中占主导作用,表现出2种稳定状态(水平不对称)的交替出现(转换概率P转换=0.149),且每种稳定状态可维持较长的时间尺度(平均维持时间约为6 s),其频谱特性满足-2次幂律分布;水平和垂直方向剪切层振荡引起的涡脱落频率分别为SrH=0.13和0.17;回流区周期性抽吸的频率为SrH=0.07。3种流动结构共存并相互作用,从而使方背Ahmed模型的非定常尾迹呈现复杂的三维湍流特性。  相似文献   

17.
开展了塞式喷管气体动力学过程的冷流实验研究。实验对不同压比条件下塞式喷管塞体表面的压力分布进行了测量,对塞体长度、侧板影响、底部特性以及二次流影响进行了研究。通过冷流实验揭示了塞式喷管的气体动力学过程和流动特性,得到的结论主要有:(1)有无侧板对塞体边缘压力分布影响比较明显,对中心线压力分布影响很小,无侧板的情况下喷管性能会有一定损失。(2)尾迹开放状态下,底部压力随环境压力变化,由于底部涡的影响,底部压力低于环境压力;尾迹闭合状态下,底部压力不再随环境压力变化。(3)尾迹闭合状态下,在底部加入二次流会有比较明显的增压效果;尾迹开放状态下,二次流对短喷管增压效果不明显,但对长喷管有一定的增压效果。  相似文献   

18.
文章针对飞行环境的压力变化,采用低气压环境复合瞬态热试验系统,在常压、20kPa、2kPa三种压力环境下模拟了火箭底部柔性防热材料在飞行过程中的瞬态热载荷.通过测试试件升温状态及表面烧蚀状态,研究压力环境对材料隔热性能的影响.通过试验结果对比分析,发现箭体底部柔性防热材料的升温幅度与烧蚀程度均随环境压力的下降而降低,2...  相似文献   

19.
相对于传统火箭或导弹,可重复使用飞行器的脉动压力问题更为复杂、且相关研究较少。本文采用RANS/LES混合方法模拟了可重复使用飞行器在竖立状态、跨声速飞行、超声速飞行3类典型状态下的非定常流场,并提取了典型特征位置的脉动压力。计算结果显示,竖立状态下的脉动压力发生在背风区和分离点,声压级约115 dB,频率不超过1 Hz;跨声速飞行时的脉动压力发生在机翼和尾翼上的激波振荡区域,声压级高达140 dB,频率在10 Hz左右;超声速飞行时的脉动压力发生在飞行器机翼、副翼的下表面等迎风面上出现较强逆压梯度的区域,声压级也高达140 dB,频率约为22 Hz。此外,飞行器底部等容易发生分离的部位也是容易产生较强脉动压力的位置。  相似文献   

20.
高速列车升力翼通过气动增升实现车体等效减重,为高速列车节能降耗提供了新思路。升力翼气动性能直接影响等效减重效果,研究车顶–升力翼组合体在不同工况下的气动特性对列车升力翼设计具有重要意义。采用计算流体力学方法和k–ε模型进行数值仿真研究,分析了车–翼连接杆对升力翼气动特性的影响,研究了升力翼飞高、来流速度、迎角等设计参数对升力翼气动特性的影响规律。研究结果表明:采用NACA0012翼型剖面的车–翼连接杆对升力翼升力和阻力的影响不超过3.7%;在车顶模型前缘引起的高速气流影响下,随着升力翼飞高增大,冲击升力翼的气流速度减小,升力有减小的趋势,在3倍弦长飞高范围内,不同飞高升力翼的升力差值最大不超过3%;当来流速度增大至90 m/s以上时,升力翼的升力系数和阻力系数分别稳定在1.62和0.61附近;在0°~22°迎角范围内,升力翼升力系数不断增大,迎角大于22°后,升力翼升力系数减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号