首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the results of an investigation of the application of the Global Positioning System (GPS) to real-time integrated missile navigation. We present quantifiable measures of navigation accuracy as a function of GPS user segment parameters. These user segment parameters include antenna phase response accuracy, single versus dual frequency, and Kalman filter structure and size. We also formulate some new phase-locked loop (PLL) filter designs for application in GPS receivers, and demonstrate their superiority over more conventional filters  相似文献   

2.
US government policy is established and procedures are being formulated to direct the implementation of techniques providing limited civil access to full GPS accuracy. The results of these efforts balance the conflicting needs of civil GPS navigation and positioning against national security requirements. Granting this access will require sufficient and demonstrable user need, must clearly provide for both national and security interests, and may lead to the imposition of a user service charge. This access will only apply to Precise Positioning Service configured, code-tracking GPS receivers.  相似文献   

3.
Preliminary results of a simulation effort to evaluate the requirements and feasibility of the global positioning system (GPS) as a civil air navigation system are presented. Evaluation is made of GPS requirements, from operational considerations, such as application to nonprecision approaches. The conceptual low-cost GPS receiver simulated here does not correct for the ionospheric or trophospheric delay, is sequential in nature, tracks only four satellites, and is not mechanized to make independent range rate measurements based on the Doppler shift of the GPS carrier frequency. The proposed GPS system has significantly different performance characteristics from the presently used VHF omnidirectional range (VOR) solidus distance-measuring equipment (DME) system. The GPS is a low signal level system and many have a relatively slow data rate due to the low-cost sequential receiver design. The results indicate that although the conceptual low-cost GPS receiver/ navigator is potentially more accurate than a VOR, the accuracy may degrade during aircraft turns and satellite shielding periods.  相似文献   

4.
The many advantages of Global Positioning System (GPS) based navigation have created a tremendous amount of interest in using GPS as the primary navigation aid onboard commercial and civil aircraft. Even in the presence of Selective Availability, the accuracy of GPS is sufficient to guide aircraft point-to-point between airports without requiring other navigation aids such as VOR or DME. Unfortunately, there is a finite probability that a GPS satellite will fail, causing the transmission of potentially misleading navigation information. Thus, before GPS can be widely adopted as a navigation aid, techniques must be devised to detect any possible failures and notify the user prior to the degradation of navigation accuracy. This paper discusses the problem of detecting possible GPS satellite failures using a technique called Receiver Autonomous Integrity Monitoring (RAIM)  相似文献   

5.
The NAVSAT concept, developed by the European Space Agency, in close cooperation with the industries and user organizations has been conceived to fulfill the civilian user requirements for a better navigation capability and mobile communication needs in the future. In selecting the NAVSAT architecture, special care has been devoted to different satellite constellation alternatives in order to identify the most promising solution in terms of navigation performance and system cost. The paper describes the present NAVSAT baseline and status. This baseline while offering precise navigation performance comparable or better than GPS, cuts significantly the overall cost of a satellite navigation system. The particular constellation selected is also easing the set up of the integrated navigation-communications-search and rescue service.  相似文献   

6.
GPS/INS uses low-cost MEMS IMU   总被引:3,自引:0,他引:3  
  相似文献   

7.
俞济祥  张更生 《航空学报》1991,12(5):287-293
 本文讨论GPS/惯性组合两种方式的优缺点。并以GPS伪距和伪距率与惯导组合为例,按GPS测量误差的不同,以及使用差分机等情况,仿真计算了机载使用的组合导航性能,进行了详细的精度分析。结果表明,这种组合的导航精度比GPS和惯导各自的导航精度高。在采用差分GPS机与惯导组合后,位置误差将进一步减少,使组合导航具有开辟例如飞机进场着陆等新的使用领域的可能性。  相似文献   

8.
A type of multi-spacecraft system with kinematical restraint but no structural restraint and force action is considered. Both the absolute and relative navigation information is required for this multi-spacecraft system, but the relative information is more critical and the accuracy requirements for relative information will be much higher than those for the absolute information. In this paper, the Global Positioning System (GPS)/Differential GPS (DGPS) are introduced and used for relative navigation. Relative motion of space vehicles is modeled. Relative position, relative velocity and relative attitude are represented and solved by GPS/DGPS measurements. Using a type of commercial GPS receiver onboard spacecraft and relative differential GPS technique, the relative navigation of space vehicles can be implemented in real-time  相似文献   

9.
随着定位技术的不断发展及多系统导航定位技术的逐步推广,多系统组合导航定位已经成为了GNSS导航定位领域中的主要发展趋势。主要阐述了GPS/BDS组合相对定位的观测方程和数学模型,并根据实测数据对比分析,从卫星可见性、精度因子、定位精度和均方根误差等方面对GPS、BDS及GPS/BDS组合定位系统的定位性能、定位精度进行了比较。研究结果表明,较单一的GPS和BDS系统定位,采用GPS/BDS组合定位可有效提高卫星可见数目和DOP值,且稳定性更好。GPS/BDS组合定位的定位精度也明显优于单一系统,这对GNSS高精度导航定位具有重要的参考价值。  相似文献   

10.
The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented covariance and filter gains at a slower rate than the state measurement update, and it uses U-D factor formulation to perform covariance computations. The SPWR algorithm saves real-time processing requirements without appreciable degradation of filter performance. Another important feature of the SPWR algorithm is that it incorporates pseudorange and delta-range data from each GPS satellite sequentially for navigation solution. The SPWR algorithm, for this application, was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented.  相似文献   

11.
Emphasis of the present work is on an elegant real-time solution for GPS/INS integration. Micro-electro mechanical system (MEMS) based inertial sensors are light but not accurate enough for inertial navigation system (INS) applications. An integrated INS/GPS system provides better accuracy compared with either INS or GPS, used individually. This paper describes an improved design and fabrication of a loosely coupled INS-GPS integrated system. The systems currently available use commercial off-the-shelf (COTS) hardware and are, therefore, not optimized for compact, single supply, and low power requirements. In the proposed system, a digital signal processor (DSP) is used for inertial navigation solution and Kalman filter computations. A field programmable gate array (FPGA) is used for creating an efficient interface of the GPS with the DSP. Direct serial interface of the GPS involve tedious processing overhead on the navigation processor. Therefore, a universal asynchronous receiver transmitter (UART) and dual port random axis memory (DPRAM) are created on the FPGA itself. This also reduces the total chip count, resulting in a compact system. The system is designed to give real time processed navigation solutions with an update rate of 100 Hz. All the details of this work are presented.  相似文献   

12.
对于民用航空来说,除了精度指标外,可靠性指标也十分重。组合导航技术可以极大的提高导航系统的精度,对组合导航系统进行实时的故障检测可以有效提高导航系统的可靠性。本文对基于残差x^2故障检测的IRS/GPS紧组合算法进行研究,并进行相应的仿真分析。仿真结果表明设计的组合导航和故障检测方案可以有效隔离GPS故障量测,在GPS存在故障时仍能保持较高的定位精度,提高组合导航系统的可靠性,具有重的工程应用价值。  相似文献   

13.
针对编队卫星自主定轨问题进行了研究,设计了一种完全不依赖于地面站和GPS系统的自主导航方案。利用星间测量信息进行卫星编队相对轨道状态的自主确定;并在利用磁强计进行卫星绝对轨道自主确定的基础上,引入星间测量信息提高绝对定轨精度;设计扩展卡尔曼滤波器进行卫星编队轨道状态估计,数学仿真结果验证了这种导航方案和算法的有效性。  相似文献   

14.
软式平流层飞艇艇体在上升和下降时经常呈堆叠状态,GPS信号会被艇体间歇性遮挡,因而只能采用惯性导航。为保证在飞艇上升和下降过程中,INS/GPS组合导航系统在被艇体遮挡GPS时仍能够提供满足精度要求的导航信息,设计了一种改进的反向传播神经网络(Back Propagation Neural Network, BPNN)惯性导航算法。采用神经网络,根据惯性导航系统在1s内的速度均值和姿态变化量,预估其在1s末的位置误差和速度误差,并对惯性导航结果进行修正。仿真实验和跑车试验结果表明,在GPS失效的30s内,新算法使得位置误差低于15m,速度误差低于0.7m/s,误差相比纯惯性导航降低了85%。  相似文献   

15.
INS/GPS/SAR integrated navigation system represents the trend of next generation navigation systems with the high performance of independence, high precision and reliability. This paper presents a new multi-sensor data fusion methodology for INS/GPS/SAR integrated navigation systems. This methodology combines local decentralized fusion with global optimal fusion to enhance the accuracy and reliability of integrated navigation systems. A decentralized estimation fusion method is established for individual integrations of GPS and SAR into INS to obtain the local optimal state estimations in a parallel manner. A global optimal estimation fusion theory is studied to fuse the local optimal estimations for generating the global optimal state estimation of INS/GPS/SAR integrated navigation systems. The global data fusion features a method of variance upper finiteness and a method of variance upper bound to ensure that the global optimal state estimation can be achieved under a general condition. Experimental results demonstrate that INS/GPS/SAR integrated navigation systems achieved by using the proposed methodology have a better performance than INS/GPS integrated systems.  相似文献   

16.
The Standoff Land Attack Missile (SLAM) is a worldwide, all-weather, precision-strike weapon system deployed from carrier-based aircraft. In the primary mode of operation, target location and other mission data are generated from intelligence sources available on the aircraft carrier and loaded into the missile prior to aircraft takeoff. After missile launch, the SLAM inertial navigation system (INS) guides the missile along the planned trajectory. Updating the missile INS from the Global Positioning System (GPS) during flight provides precise midcourse navigation and enhances target acquisition by accurate, on-target pointing of the SLAM Maverick seeker. The GPS/INS avionics and software integration used for SLAM are described in detail, along with some of the design tradeoffs that led to the approach. The avionics configuration integrates the Harpoon midcourse guidance unit, which includes a strapdown inertial sensor package and digital processor, with a Rockwell-Collins single-channel, sequential GPS receiver processor unit (RPU), a derivative of the GPS phase-III user equipment. In addition to the GPS receiver elements the RPU contains the navigation processor, which executes the SLAM navigation, Kalman filter algorithms, and other guidance algorithms including seeker pointing. Flight-test results of the SLAM GPS-aided INS are also included  相似文献   

17.
The current edition of the US Federal Radionavigation Plan, issued in 1984, presents a consolidated federal plane on the management of those radionavigation systems which are used by both the civilian and military sectors. It states the US Dept. of Defense (DoD) goal to phase out the use of TACAN, VOR/DME, OMEGA, LORAN C, and TRANSIT in military platforms and for Global Positioning System (GPS) to become the standard radionavigation system for DoD. This would eliminate all the current sole-means air navigation systems (TACAN and VOR/DME) aboard military aircraft. Instrument Flight Rule (IFR) operations within controlled airspace requires an operating sole-means air navigation system to be aboard the aircraft. The authors investigate the requirements for GPS certification as a sole means air navigation system in the US National Airspace System (NAS); discuss the implication for GPS user equipment (UE) hardware and software; describe the actual UE implementation; and discuss approaches for UE integration with flight instruments on US Navy aircraft  相似文献   

18.
Multipath-adaptive GPS/INS receiver   总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   

19.
Common concepts for autonomous on-board navigation systems rely on the numerical integration of a spacecraft trajectory between subsequent measurements of a navigation sensor such as GPS. In combination with a Kalman filter, a predicted state vector becomes available at discrete, but not necessarily equidistant time steps. When used for real-time attitude control or geo-coding of image data, the on-board navigation system has to provide continuous dense output at equidistant time steps, which usually conflicts with the natural stepsize of the relevant integration methods and the non-equidistant measurement times. To cope with this problem, the integrator has to be supplemented by an interpolation scheme of compatible order and accuracy.After presenting a representative formulation of an on-board navigation system and deriving related timing and accuracy requirements, suitable Runge–Kutta methods and associated interpolants are selected and evaluated. Promising results are obtained for the classical RK4 method in combination with Richardson extrapolation and 5th-order Hermite interpolation. The 5th-order Fehlberg method with interpolation due to Enright and, for drag-free scenarios, the 5th-order Runge–Kutta–Nystrom method with 5th-order Hermite interpolation provide a good performance in terms of position interpolation. However, as both methods exhibit significant errors for the velocity interpolation, they are not recommended for use with the outlined navigation filter.  相似文献   

20.
针对单频单星座地基增强系统(GBAS)无法满足飞机III类精密进近与着陆导航性能需求的问题,提出了将北斗导航卫星系统(BDS)与全球定位系统(GPS)进行融合,构建一种新型的基于GPS/BDS的双频双星座GBAS。首先,分析了GBAS的工作原理,并对Hatch滤波器的误差进行了分析,给出了一种适用于双频GBAS的无码载偏离载波相位平滑伪距算法;然后,对机载完好性算法进行了研究,给出了H0和H1假设下的机载保护级计算方法;最后,进行了系统验证实验,实验结果表明,单星座GBAS不能满足飞机III类精密进近与着陆导航的性能需求,GPS和BDS融合后可见卫星个数得到提升,优化了卫星几何分布,进而使得系统的可用性由80.6081%提升到大于99.9999%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号