首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception.  相似文献   

2.
The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.  相似文献   

3.
There has been no convincing explanation on a mechanism inducing plagiogravitropism of lateral roots. The present work deals with gravitropic features of Vignaangularis lateral roots during the course of their growth and morphometric analysis of root caps, columella cells and amyloplasts. Regardless of the magnitude of deviation of the primary root axis from the gravity vector, the newly emerging lateral roots tended to keep a constant angle to the gravity vector. They modified gravireaction several times during the course of their development: a first horizontal-growth stage when they grow in the cortex of primary roots (stage I), a sloping-down growth stage from their emergence to a length of about 1 mm (stage II), a second horizontal-growth stage from a length of about 1 mm to that of over 4 mm (stage III) and a curving-down stage thereafter (stage IV). The columella cells with amyloplasts large enough to sediment were not fully differentiated in the stage I but the turning point from the stage I to II was associated with the development of amyloplasts which were able to sediment toward the distal part of the cell. Amyloplasts were significantly small in the lateral roots over 10 mm long compared with those in ones 0–10 mm long, suggesting that they rapidly develop immediately after the lateral roots emerge from primary roots and then gradually decrease their size when the lateral roots grow over 10 mm long. This dimensional decrease of amyloplasts may be partially involved in weak gravireaction in the stage III. Evidence was not presented indicating that a switchover from the stage III to IV was connected with the dimension of root caps, the number of columella cells and the development of amyloplasts. Some factors at the molecular level rather than at the cellular and tissue levels are probably dominant to induce the stage IV.  相似文献   

4.
We examined whether sedimentable amyloplasts act as statolith in the perception of gravity in woody stems using the elongated internodes of Japanese cherry (Prunus jamasakura Sieb. ex Koidz.). In the internode of the seedlings grown on earth, amyloplasts were found sedimented at the distal end of each cell of the endodermal starch sheath tissue. In the internode grown on three-dimensional (3-D) clinostat, amyloplasts were dispersed throughout the cell matrix in the endodermal starch sheath tissue. After changing the positions of the internode from vertical to horizontal, re-sedimentation of amyloplasts toward the direction of gravity was completed in 1h, whereas the bending of the internode was observed after 12 days. We propose that sedimentable amyloplasts in the endodermal starch sheath cells may play a role in gravity perception leading to secondary xylem formation in the secondary thickening growth and eccentric growth in gravi-bending of tree stems.  相似文献   

5.
Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.  相似文献   

6.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

7.
Published observations on the response times following gravistimulation (horizontal positioning) of Chara rhizoids and developing roots of vascular plants with normal and "starchless" amyloplasts were reviewed and compared. Statolith motion was found to be consistent with gravitational sedimentation opposed by elastic deformation of an intracellular material. The time required for a statolith to sediment to equilibrium was calculated on the basis of its buoyant density and compared with observed sedimentation times. In the examples chosen, the response time following gravistimulation (from horizontal positioning to the return of downward growth) could be related to the statolith sedimentation time. Such a relationship implies that the transduction step is rapid in comparison with the perception step following gravistimulation of rhizoids and developing roots.  相似文献   

8.
The role of Ca2+ in the gravitropic perception and/or response mechanism of Coprinus cinereus was examined by treating stipes with inhibitors of Ca2+ transport and calmodulin. Inhibitors had no effect on gravity perception but significantly diminished gravitropism. It is concluded that, under the conditions tested, Ca2+ is not involved in gravity perception by Coprinus stipes, but does contribute to transduction of the gravitropic impulse. The results would be consistent with regulation of the gravitropic bending process requiring accumulation of Ca2+ within a membrane-bound compartment. Treatment of stipes with an actin inhibitor caused a significantly delayed response, a result not observed with the Ca2+ inhibitors. This suggests that cytoskeletal elements may be involved directly in perception of gravity by Coprinus stipes while Ca(2+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

9.
The debate about whether gravity sensing relies upon statoliths (amyloplasts that sediment) has intensified with recent findings of gravitropism in starchless mutants and of claims of hydrostatic gravity sensing. Starch and significant plastid sedimentation are not necessary for reduced sensing in mutant roots, but plastids might function here if there were a specialized receptor for plastid mass e.g. in the ER. Alternatively, components in addition to amyloplasts might provide mass for sensing. The nucleus is dense and its position is regulated, but no direct data exist for its role in sensing. If the weight of the protoplast functioned in sensing, why would there be specific cytological specializations favoring sedimentation rather than cell mass? Gravity has multiple effects on plants in addition to gravitropism. There may be more than one mechanism of gravity sensing.  相似文献   

10.
On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10(-4) M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.  相似文献   

11.
Although the orientation of mycelial hyphal growth is usually independent of the gravity vector, individual specialised hyphae can show response to gravity. This is exemplified by the sporangiophore of Phycomyces, but the most striking gravitropic reactions occur in mushroom fruit bodies. During the course of development of a mushroom different tropisms predominate at different times; the young fruit body primordium is positively phototropic, but negative gravitropism later predominates. The switch between tropisms has been associated with meiosis. The spore-bearing tissue is positively gravitropic and responds independently of the stem. Bracket polypores do not show tropisms but exhibit gravimorphogenetic responses: disturbance leads to renewal of growth producing an entirely new fruiting structure. Indications from both clinostat and space flown experiments are that the basic form of the mushroom (overall tissue arrangement of stem, cap, gills, hymenium, veil) is established independently of the gravity vector although maturation, and especially commitment to the meiosis-sporulation pathway, requires the normal gravity vector. The gravity perception mechanism is difficult to identify. The latest results suggest that disturbance of cytoskeletal microfilaments is involved in perception (with nuclei possibly being used as statoliths), and Ca2(+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

12.
Roots have been shown to respond to a moisture gradient by positive hydrotropism. Agravitropic mutant plants are useful for the study of the hydrotropism in roots because on Earth hydrotropism is obviously altered by the gravity response in the roots of normally gravitropic plants. The roots are able to sense water potential gradient as small as 0.5 MPa mm−1. The root cap includes the sensing apparatus that causes a differential growth at the elongation region of roots. A gradient in apoplastic calcium and calcium influx through plasmamembrane in the root cap is somehow involved in the signal transduction mechanism in hydrotropism, which may cause a differential change in cell wall extensibility at the elongation region. We have isolated an endoxy loglucan transferase (EXGT) gene that is strongly expressed in pea roots and appears to be involved in the differential growth in hydrotropically responding roots. Thus, it is now possible to study hydrotropism in roots by comparing with or separate from gravitropism. These results also imply that microgravity conditions in space are useful for the study of hydrotropism and its interaction with gravitropism.  相似文献   

13.
In order to investigate the movement of a statolith complex along the longitudinal axis of root cap statocytes under different mass accelerations, a series of experiments with Lepidium sativum L. in an automatically operating centrifuge during the Bion-11 satellite flight and on a centrifuge-clinostat have been performed. During spaceflight, roots were grown for 24 h under root-tip-directed centrifugal 1-g acceleration, then exposed to microgravity for 6, 12 and 24 min and chemically fixed. During the first 6 min of microgravity, the statoliths moved towards the cell center with a mean velocity of 0.31 +/- 0.04 micrometers/min, which decreased to 0.12 +/- 0.01 micrometers/min within subsequent 12-24 min period. The mean relative position of the statolith complex in respect to the distal cell wall (% of total cell length) increased from 24.0 +/- 0.5% in 1 g-grown roots to 38.8 +/- 0.8% in roots exposed for 24 min to microgravity, but remained smaller than in roots grown continuously in microgravity (48.0 +/- 0.7%). The properties of the statolith movement away from the distal pole of the statocyte were studied in roots grown for 24 h vertically under 1 g and then placed for 6 min on a fast rotating clinostat (50 rpm) or 180 degrees inverted. After 2 min of both treatments, the mean relative position of the statoliths increased by about 10% versus its initial position. Later on, the proximal displacement of amyloplasts slowed down under simulated weightlessness, while it proceeded at a constant velocity under 1 g inversion. In roots grown on the clinostat and then exposed to 1 g in the longitudinal direction, amyloplast sedimentation away from the central region of statocyte was similar at the beginning of distal and proximal 6-min 1-g stimulation. However, at the end of this period statolith displacement was more pronounced in proximal direction as compared to distal. It is proposed that statolith position in the statocyte of a vertical root is controlled by the force of gravity, however, the intracellular forces, first of all those generated by the network of the cytoskeleton, are manifested when an usual orientation of the organ is changed or the statocytes are exposed to microgravity and clinorotation.  相似文献   

14.
Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil.  相似文献   

15.
Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied 45Ca2+ across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since 1) auxin transport inhibitors interfere both with gravitropic curvature and gravi-induced polar calcium movement and 2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.  相似文献   

16.
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.  相似文献   

17.
Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism 1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.  相似文献   

18.
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.  相似文献   

19.
The principle of establishing and maintaining a gravitropic set point angle depends on gravisensing and a subsequent cascade of events that result in differential elongation of the responsive structures. Since gravity acts upon masses, the gravisensing mechanisms of all biological systems must follow the same principle, namely the sensing of some force due to differential acceleration of the perceiving entity and a reference structure. This presentation will demonstrate that gravisensing can be accomplished by various means, ranging from cytoskeletal organization, mechano-elastic stress to perturbation of electric signals. However, several arguments indicate that sedimentation of either dense plastids (statoliths), the entire protoplast, or a combination of these represents the primary step in graviperception in plants. In fungi, nuclei and cytoskeletal proteins are believed to form a network capable of gravisensing but sedimenting organelles that may function as statoliths have been identified. Theoretical and practical limitations of gravisensing and detection of acceleration forces necessitate microgravity experiments to identify the primary perceptor, subsequent biochemical mechano-transduction, and biological response processes.  相似文献   

20.
Rotation at 4, 10, 50 and 100 rpm on a horizontal clinostat and in microgravity exerts limited effects on the morphogenesis of lettuce and cress root statocytes and statoliths if compared with the vertical control or 1 g spaceflight reference centrifuge. However, the average distance of statoliths from the distal wall increases. The pattern of plastid location of microgravity-grown and that of clino-rotated samples has been determined at 10, 50, and 100 rpm. Experiments on the centrifuge-clinostat and spaceflight centrifuge (acceleration forces of 0.005 to 1 g) revealed that the average statolith location depends on the amplitude of acropetally or basipetally directed mass acceleration. Decreasing the acropetally directed force from 1 g to 0.4 g dislocates statoliths towards the cell center possibly mediated by the elastic forces of the cytoskeleton. In statocytes formed on the clinostat or in microgravity, the majority of statoliths are located at the center of the cell. To force the statoliths from the center of the statocyte towards one of its poles, a threshold mass acceleration of 0.01 g is required. Statocytes with centrally-located statoliths are considerably more effective in transducing a gravistimulus than those with distally-located plastids. The latent time of the graviresponse is shorter and the response itself is enhanced in roots grown on the clinostat compared to vertically grown samples. The early phases of graviperception are independent of root growth conditions since presentation time and g-threshold are similar for roots grown stationary and those on a clinostat. We propose a sequence of events in gravitropic stimulation that considers not only the lateral displacement of statoliths, as predicted by the starch-statolith hypothesis, but also its longitudinal motion, together with differential gravisensitivity of mechanotransducing structures along the lower-most longitudinal cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号