首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
液体火箭发动机试验推力测量的准确性对评价发动机性能意义重大。为减小1 200 k N液氧/煤油发动机地面试验时由于试验系统的原因对发动机推力测量准确性带来的影响和提高推力测量精度,针对1 200 k N液氧/煤油发动机试验台的推力测量系统,通过理论分析和试验验证的方法分析了泵前管道推力分离面上的2台波纹管的受力状态及波纹管在低温状态和受压状态下对推力测量的影响,获得了波纹管的竖向推力损失、低温与常温推力原位校准斜率修正系数、负推力修正系数等重要数据,并提出了波纹管安装固定要求,为修正1 200 k N液氧/煤油发动机推力测量数据、提高发动机推力测量准确性提供依据。  相似文献   

2.
多叶油润滑箔片轴承试验研究   总被引:1,自引:0,他引:1  
用多叶箔片轴承取代火箭发动机涡轮泵上的滚珠轴承具有工作寿命长、工作转速高、能量损失小等重要优点.设计出了专门的油润滑多叶箔片轴承试验台,初步实现了30,000转/分的运转速度.试验台转轴采用压缩气体带动涡轮驱动,径向轴承和止推轴承均设计为五叶箔片轴承.试验结果表明多叶油润滑箔片轴承能够实现转子高转速运行,具有良好的运转稳定性,且对转子的升降速适应性强、有一定的抗冲击能力、摩擦损失小.  相似文献   

3.
超高速混合陶瓷滚珠轴承转速120000r/min,DN值达到300万。根据日本航空航天技术研究所(NAL)报道,未来的航天飞机将使用重复型发动机。用既小型轻量又性能良好的重复型火箭发动机,使得向燃烧器提供液氢(253℃)液氧(183℃)的超低温推进剂涡轮泵变得高速化。目前的多级式火箭的上面级火箭发动机其重量、性能对发射卫星的有效负荷影响很大,因此,转速100000r/min级的涡轮泵比较适宜,超高速涡轮泵的研究开发在世界上处于领先地位。 航空航天技术研究所(NAL)采用快速冷却的外环导向方式,开发了用氮化硅陶瓷滚珠这样一种混合陶瓷…  相似文献   

4.
液氧试验台系统设计与实现   总被引:1,自引:1,他引:0  
液氧试验台能够进行液氧煤油发动机液氧泵中轴承、密封件模拟实际液氧工作环境的可靠性、安全性研究。试验台由配气系统、液氧供应系统、涡轮驱动系统、轴径向加载系统、操纵指令控制系统、测试系统、安全防护系统等组成.通过轴承、端面密封组件在液氧、液氮中的运转试验,可为发动机研制提供准确数据.  相似文献   

5.
双组元离心式喷注器10 N发动机偏工况试验   总被引:1,自引:0,他引:1  
根据国内外同类发动机研制经验,双组元10 N发动机在入口压力为0.8~2.2 MPa范围内,入口压力偏差会使发动机真空比冲、燃气温度等性能产生较大变化。为了获得双组元离心式喷注器10 N发动机在落压推进系统要求的入口压力范围内性能,通过采用小流量喷雾试验台和42 km高模试验台,对偏工况条件下的冷态性能及热试性能进行试验研究。试验结果表明:该发动机额定入口压力1.58 MPa时真空比冲为2881 N·s/kg;当入口压力在0.6~2.5 MPa变化时,对应真空推力从4.7 N增加到14 N,落压比为3;入口压力0.6 MPa时真空比冲为2600 N·s/kg,入口压力2.5 MPa时真空比冲为2956 N·s/kg;入口压力在0.6~2.5 MPa试验范围内,发动机燃烧室壁温均低于材料许用温度,表明发动机热设计优良,可满足双组元落压推进系统对姿控发动机的性能需求。  相似文献   

6.
为实现运载火箭无毒、无污染、低成本和高可靠的目标,研制了新一代运载火箭辅助动力系统气氧/煤油无毒姿控发动机。经过多年攻关,气氧/煤油系列发动机技术研究工作取得突破性进展,具有可靠的稳态及脉冲工作性能,达到了工程应用要求。首先介绍了气氧/煤油系列60 N,150 N和300 N 3种推力发动机的技术方案和关键技术,重点介绍了关键技术的研究情况,包括点火技术、轻小型电点火器技术、燃烧技术、冷却技术以及高温抗氧化涂层技术等,最后给出了发动机热试车情况,并对3种推力发动机的主要性能进行了总结。气氧/煤油发动机为国内首个达到工程应用要求的无毒姿控发动机。  相似文献   

7.
大推力火箭发动机摇摆过程中,摇摆轴承使用环境与轴承自身设计指标不同,在承受较大径向载荷的同时,还要承受一定的轴承载荷,并实现低速往复摆动。为获得轴承的静态承载能力摩擦系数及疲劳寿命等关键参数,设计了一种新的轴承试验系统,模拟轴承在发动机不同工作状态下的安装边界和受载形式。通过试验获得了相应的数据,试验结果表明:轴承静态...  相似文献   

8.
谐振点火系统因其结构简单且可重复多次点火而具有很大吸引力。在本研究工作中,设计和试验了一种谐振式点火器,用气氧和煤油燃烧来形成火炬。环境条件下的初步试验结果表明在0.2~0.3LPa较低的煤油喷注压力下,设计可点燃气氧/煤油混合物的点火器是可行的,这就使利用恒压燃料贮箱中的煤油进行点火成为可能。氧在0.1s内就可在谐振腔内被加热至点火温度并在瞬间点燃喷入的煤油。  相似文献   

9.
目前大推力液氧煤油火箭发动机稳定工作时燃烧室达到超临界环境,而现有的液滴蒸发燃烧模型仅适用于亚临界环境,无法用于超临界环境。建立了亚/超临界环境下煤油液滴燃烧仿真计算模型,开展了亚/超临界环境下环境参数对煤油液滴燃烧特性的影响研究。结果表明:随着环境温度的升高,火焰温度大幅增加,着火时间、迁移时间和液滴寿命均缩短。随着环境压力的增大,煤油液滴燃烧的无量纲火焰半径减小,火焰温度小幅度增大,着火时间、迁移时间和液滴寿命均缩短。压力振荡环境下,煤油液滴燃烧的液滴蒸发速率、无量纲火焰半径和火焰温度随时间变化曲线的振荡频率与环境压力振荡的频率一致,火焰温度对环境压力振荡尤为敏感。  相似文献   

10.
冯耀辉 《火箭推进》2003,29(6):30-39
为进行N2O/丙烷(C3H8)火箭发动机(NOP)试验,在亚拉巴马大学(UAH)新建了一座发动机试车台,装备了台架式推进剂供应系统、10001bsf(4448.22N)的推力架和数据采集系统.研究了N2O催化分解点火方案,对几种催化剂材料进行了评估.Shel1-405和钴基的ZSM-5性能良好,可使N2O充分分解,并点燃碳氢燃料,如丙烷.试验表明,纯N2O通过Shel1-405时,催化分解反应在400°F(204℃)时进行,如果加入少许碳氢燃料(例如丙烷或丙烯),此温度将下降到大约200°F(93℃).NOP发动机在L*=3m时,在混合比4.89到8.68之间进行了试验.在合适的热损失模型下,试验数据与理论计算结果相吻合.使NOP发动机稳定工作的范围基本确定为N2O流量<0.270 1bm/sec(0.122kg/s),混合比在5~6之间.用辐射测量仪来测量发动机排气温度和羽流成分,用羽流皮托管校验推力数据.  相似文献   

11.
为研究对唇形密封圈可重复使用至关重要的开启性能,建立了唇形密封圈临界开启判据和仿真计算模型,求解了临界开启转速.研究了弹簧紧箍力、唇口过盈量以及泵入口压力对临界开启转速的影响规律,进行了唇形密封圈水运转试验.结果表明:随着弹簧紧箍力的增加,临界开启转速呈线性增加,推荐弹簧紧箍力取值范围为0.1~0.3 N/mm;当唇口过盈量从0.1 mm增加到0.8 mm时,临界开启转速增加量仅为1%,推荐唇口过盈量取值范围为0.3~0.6 mm;泵入口压力对临界开启转速影响较大,当泵入口压力较高时,可以通过减小弹簧紧箍力来降低临界开启转速;泵入口压力从0.4~0.75 MPa变化时,临界开启转速的理论研究结果与试验研究结果偏差范围为2%~7.2%,表明关于唇形密封圈开启转速的数值计算是正确的.  相似文献   

12.
赵万明 《火箭推进》2006,32(5):51-55,64
针对液氧/煤油发动机地面试车中测量参数类型多,各参数测量原理不同,采集装置各异、校准方法复杂,测量过程出现转速数据波动,低温温度测量精度低,低温压力零位漂移,负推力修正及低频脉动压力参数测量等诸多技术问题进行了深入研究,提出了解决途径、验证方法等。  相似文献   

13.
为实现空间推进系统的无毒、无污染、低成本、高性能和高可靠性,在国内首次研制了运载火箭辅助动力系统气氧/煤油发动机。以推力150 N的气氧/煤油发动机为研究对象,给出了点火、喷注器及身部冷却、阀门等的设计方案。介绍了研制中突破的小姿控发动机电脉冲点火器、气/液组合的有效混合、发动机稳态工作时的烧蚀,以及高空真空点火等关键技术。计算了气液两相流稳态燃烧流场并进行了氧化剂路气流试验。地面热试车和高空模拟热试车的结果表明,电脉冲点火器可实现发动机的可靠点火,采用同轴离心式内混合喷注、铌合金液膜辐射冷却方案的该气氧/煤油发动机真空比冲可达2 800 N.s/kg,脉冲工作大于3 000次,但真空中发动机的冷却仍需进一步研究。  相似文献   

14.
针对磁悬浮飞轮不平衡质量导致转子在高速旋转时径向振幅较大的缺点,提出了一种前馈抑制方法。建立了磁轴承转子动力学模型,基于达朗伯原理,分别得到了不平衡质量矩引起的动约束力和转子惯性轴偏离几何轴引起的离心力。仿真结果表明:转子两端的不平衡质量大小相等,转速为5000r/min时,飞轮转子采用前馈抑制方法后,转子径向振幅从12μm减小至2μm,减小约83%。实验结果与仿真结果一致,验证了前馈抑制方法可大幅度提高飞轮系统的稳定性。  相似文献   

15.
本文对洛克达因公司在研究可重复使用火箭的鉴定试验期间,航天飞机主发动机偏离额定工况工作的分析和论证进行了描述。航天飞机主发动机(SSME)额定推力的范围是:设计推力的65%到109%,扩大论证的范围是:设计推力的17%、22%、27%、40%、45%和50%。在低推力工作期间,额外的收获包括:高压氧化剂涡轮泵(HPOTP)使用液体静压轴承,高压燃料涡轮泵(HPFTP)在第一临界转速下运转,在低工况工作的燃烧稳定性以及喷管流动分离热负荷的改善。  相似文献   

16.
针对液氧煤油液体火箭发动机,采用全尺寸六分之一网格,设置周期性边界条件的简化模型,计算得到了喷注器面径向隔板喷嘴交错排列时推力室内三维非稳态两相湍流燃烧流场分布,与全尺寸网格计算结果基本一致,验证了算法与简化模型的有效性,并与喷注器面径向隔板喷嘴直线排列时推力室燃烧流场计算结果进行了对比.结果表明,采用全尺寸六分之一网格,也可较好地数值模拟推力室内燃烧流场;径向隔板喷嘴交错排列,不但有利于延长煤油和氧气的混合时间,使混合更加充分,提高燃烧效率和燃烧室压力,而且可增加喷嘴空间分布的均匀性,使燃烧室中雾化粒子分布更均匀,从而提高温度分布的均匀性.  相似文献   

17.
试验评定了液氧/氢旋流同轴式喷嘴的燃烧性能。水/氮气的冷流试验发现液氧出口凹进的旋流同轴式喷嘴的流动具有自身脉动的特征。在2.6和3.5MPa 室压、850和500N 推力、4.0~8.0混合比的条件下进行单喷嘴燃烧室的燃烧试验。试验中测量、分析了每种喷嘴燃烧室壁的燃烧性能、室压分布及热载荷。结果表明:对于直流同轴式喷嘴,燃烧性能主要受蒸发效率所控制;对于旋流同轴式喷嘴,燃烧性能主要受混合效率所控制。已发现凹进旋流同轴式喷嘴的燃烧室壁的热负荷明显地增加了,并且在某些状态下还出现了不稳定燃烧。  相似文献   

18.
针对液氧/煤油发动机性能提升时管路流阻大的问题,采用电传热试验系统研究了高分子减阻剂对模拟管路中高流速火箭煤油的流阻与传热特性的作用效能,并采用分析仪器考察了高分子减阻剂的添加对火箭煤油理化性能的影响。研究结果表明,含有0. 05%减阻剂的火箭煤油的理化性能满足《液体火箭发动机用煤油规范》关键技术指标要求;减阻剂的添加对火箭煤油产生一定的减阻效果,在流速20~60 m/s,温度50~200℃范围内,JZ-1的减阻率达60. 3%~76. 4%,JZ-2的减阻率为33. 1%~48. 4%;而减阻剂的添加降低了火箭煤油的传热性能,且减阻剂分子量越大传热性能降低越明显,在流速50 m/s,温度175℃时,添加JZ-1,JZ-2后火箭煤油传热系数分别下降32. 8%,8. 3%。从减阻剂在改变流动阻力和传热两方面评价,JZ-2对火箭煤油具有较佳的综合性能。  相似文献   

19.
以Jeffcott转子为对象,从理论上介绍了重力副临界现象。在转轴有限元模型及轴承支承刚度修正的基础上,对某大推力补燃循环液体火箭发动机涡轮泵转子的前两阶临界转速和振型进行了仿真分析。通过高速运行试验,借助重力副临界识别出了转子的前两阶临界转速,并与全转速运行的识别结果及仿真结果进行了对比,1、2阶临界转速识别结果误差...  相似文献   

20.
本文介绍了真空推力为115N 的肼催化分解推力室的设计、生产及试验情况。讨论了设计准则和有关问题。推力室在落压式系统通常使用的落压比4:1的压力范围(2.2~0.55MPa)内进行了试验。试验分别在地面和高空条件下进行。实测的推力、室压、比冲均达到设计值。讨论了某些试验过程中出现的低频室压振荡机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号