首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MF-1是我国的首次高超声速空气动力学基础问题研究模型飞行试验。本文研究建立了MF-1试验飞行器弹道设计与拉偏仿真数学模型,开展了MF-1弹道设计和拉偏仿真计算。对结果分析表明,对于MF-1这类无控飞行器,某些条件下可能在飞行过程中发生滚转共振现象,导致飞行总迎角迅速发散,气动过载显著增加,飞行弹道严重偏离设计弹道,甚至可能出现解体风险。通过严格控制飞行器加工和安装偏差,有助于降低滚转共振发生概率。  相似文献   

2.
飞船返回舱再入飞行迎角和侧滑角估计   总被引:1,自引:0,他引:1  
汪清  方方  何开锋 《空气动力学学报》2005,23(4):437-441,454
迎角和侧滑角是飞船返回舱再入飞行试验气动分析工作所需的重要参数.本文发展了基于弹道重建的返回舱迎角和侧滑角估计方法.首先,利用舱上测量数据和有限的地面雷达测量数据,采用极大似然法进行弹道重建,再现黑障区的弹道,同时给出整个再入过程的弹道参数;然后,利用几何关系法计算迎角和侧滑角,并进行风修正.对某飞船返回舱的飞行试验数据进行了计算和分析,结果证实了弹道重建数学模型和算法的正确性以及迎角和侧滑角估计方法的有效性.  相似文献   

3.
水陆两栖飞机的机身外形复杂,采用单一迎角传感器难以消除侧滑角的影响。对某大型水陆两栖飞机的前机身模型进行风洞试验,根据机身两侧迎角传感器受侧滑角影响的特点,在机身两侧对称位置安装迎角传感器,研究左右两侧迎角传感器的测量值随模型迎角、侧滑角的变化规律;根据左右两侧测量值的均值和差值,反算得到飞行迎角和侧滑角,并对此迎角、侧滑角解算方案进行试飞验证。结果表明:机身两侧安装迎角传感器可以消除侧滑角影响,从而得到准确的迎角信号,还可根据左右迎角差值计算得到侧滑角,采用机身左右两侧的迎角传感器解算飞行迎角和侧滑角是可行的。  相似文献   

4.
FADS/INS组合法迎角、侧滑角测量方法研究   总被引:3,自引:0,他引:3  
嵌入式大气数据传感(FADS)系统比传统迎角、侧滑角传感器在测量精度、可靠性、隐身性能上都具有较大的优势,因此该系统可被应用于各型飞行器上。但由于该系统在获得大气参数方面存在延时,所以,它在飞行器机动飞行状态下,迎角和侧滑角的测量精度会下降。针对这一问题,本文提出了以FADS测量结果为基础,采用惯性导航系统(INS)测量的迎角、侧滑角变化量进行修正的FADS/INS组合法迎角、侧滑角测量方法。理论分析和仿真结果表明,该组合系统在飞行器处于平稳和机动飞行时,对迎角、侧滑角的测量均能获得较高精度。  相似文献   

5.
空地导弹弹道增程方案设计   总被引:1,自引:1,他引:0  
针对空地导弹直线对准弹道方案,采用优化初始航迹角的方法得到满足终端速度约束的弹道;最大射程飞行方案采用控制迎角的方法使航程最大,采用多项式样条插值的方法来估计迎角变化规律,用遗传算法优化采样点的参数,得到了满足终端速度约束的最大射程。通过算例对比可知,最大射程飞行方案的射程比直线对准飞行方案提高了三倍多。研究结果对空地导弹的标准弹道设计有一定的参考价值。  相似文献   

6.
MF-1是我国首次以高超声速空气动力学基础问题研究为目的的航天模型飞行试验,试验模型为锥-柱-裙体,主要研究0°迎角圆锥边界层转捩和压缩拐角激波/边界层干扰现象。针对飞行试验转捩区测量需求,引入和改进了风洞试验中常用薄壁测热技术,设计了一种新型变厚度薄壁测温结构,有效抑制了侧向导热损失,可基于一维热流辨识方法获取可靠的表面热流数据;与现有风洞试验薄壁测热技术相比,该方法可提高有效测量时间,降低时间延迟效应,适于长时间飞行试验测量。针对柱-裙压缩拐角激波/边界层干扰区压力测量需求,采用了风洞试验中常用的基于引压管和电子压力扫描阀的测量方案,通过改进装配工艺,提高了系统耐压能力,实现了模型飞行试验全弹道表面压力测量。模型飞行试验结果表明:MF-1模型飞行试验测量系统可靠,获得了可供边界层转捩和激波/边界层干扰研究分析及CFD验证的可信数据;在热流急剧下降时一维热流辨识存在较大误差,以及压力测量中的时间延迟和低压测量准确度存在不足,是需要进一步改进的问题。  相似文献   

7.
计算直升机大角度飞行状态的飞行性能、品质和载荷需要大迎角和大侧滑角的机身气动特性数据作为设计输入,在直升机研制过程中,这些数据通常采用风洞试验和CFD计算的方法来获得。为了研究上述两种方法得到的气动特性数据之间的相关性,采用CFD方法计算了3种不同构型的直升机机身大角度状态的气动特性,并与风洞试验结果进行了对比分析。分析结果表明,CFD计算得到的大角度状态气动特性结果变化趋势与风洞试验结果一致,两者的差值在部分迎角或侧滑角时比较大,而两者的比值基本不随迎角或侧滑角的变化而变化。研究结果可为大角度状态气动特性CFD计算结果修正和CFD计算方法在直升机研制中的应用提供参考。  相似文献   

8.
高超声速滑翔飞行器摆动式机动突防弹道设计   总被引:6,自引:2,他引:4  
谢愈  刘鲁华  汤国建  徐明亮 《航空学报》2011,32(12):2174-2181
 为提高大升阻比高超声速滑翔飞行器机动突防能力,提出了一种侧向摆动式机动弹道的设计方法。基于动态逆的思想,建立了侧向摆动式机动弹道的弹道形式和所需倾侧角间的关系模型;在平衡滑翔假设下,将包括动压、过载和热流在内的飞行约束转化为迎角约束,从而确定了迎角-速度飞行走廊;在此基础上,设计了平衡滑翔情况下满足侧向摆动式机动及飞行约束所需的迎角变化规律。根据所设计的迎角和倾侧角,即可实现平衡滑翔情况下预定机动模式的侧向机动。以HTV(Hypersonic Technology Vehicle)为例进行仿真分析,结果表明该方法能够快速设计出预定机动幅度和机动频率的侧向摆动式机动突防弹道。  相似文献   

9.
通过风洞实验方法研究了非零侧滑角状态下,大迎角细长体模型的侧向力和偏航力矩变化规律。并且应用主动流动控制技术,对非零侧滑角模型的侧向力和偏航力矩加以控制,研究其有效控制的侧滑角范围和控制规律。研究结果表明:在迎角α=55°、侧滑角β=-24°~+24°范围内,改变细长体模型头部微扰动摆振片的平衡周向角位置(有效周向角位置在±16°之间变化),模型侧向力和偏航力矩呈线性变化规律。此项力和力矩线性控制技术为飞行器在大迎角高机动飞行发生侧滑时,实现恢复及保持安全姿态飞行,提供一种有效飞行控制新方法。  相似文献   

10.
杨朝旭  郭毅  雷廷万  李荣冰 《航空学报》2020,41(6):523456-523456
可控的过失速机动是先进战斗机超机动性能的重要标志,飞机飞行包线的扩大已超出传统的大气数据系统测量范围,可靠的迎角、侧滑角、总压、静压等飞行大气数据是制约先进战斗机过失速机动中飞行控制的关键因素。以中国推力矢量验证机为对象,基于过失速机动飞行试验的数据,开展大气参数估计与验证研究。结合过失速机动的时间与空间特性,研究了基于风速、地速、空速矢量和惯性姿态、导航参数的大气参数融合计算方法;针对过失速大迎角状态下飞机周围气流非定常、模型非线性导致的融合大气参数误差的复杂特性,进一步构建深度神经网络,对机动状态融合迎角、侧滑角的强非线性误差进行拟合。仿真和飞行试验表明:该方法可在大迎角飞行状态下实现主要大气参数的融合估计,过失速机动过程中融合迎角误差优于2.3°,融合得到的大气参数可为过失速大迎角机动飞行控制提供可靠的大气参数状态反馈。  相似文献   

11.
基于GPS的飞机侧滑角校准试飞方法研究   总被引:1,自引:0,他引:1  
针对飞机侧滑角不能够精确测量的问题,提出了一种基于GPS的飞机侧滑角校准试飞方法。先在稳定风场空域以垂直三边飞行,得出飞机的真实空速和准确的空域风场数据,再利用在此空域作协调侧滑试飞动作进行侧滑角校准。试验结果证明此校准试飞方法可行有效。  相似文献   

12.
针对火星探测器进入飞行弹道的高马赫数、化学非平衡效应和低动压等特点,提出了一种基于火星进入大气数据系统/惯性测量单元(MEADS/IMU)耦合的测量方法,实现海拔60 km以下区域的火星大气数据测量。利用自主研发CACFD软件平台的化学非平衡模型/完全气体模型计算获得探测器宽速域飞行流场的表面压力点数据,建立了基于BP神经网络的MEADS算法模型。在高马赫数段(Ma>12)利用IMU测量获得的马赫数作为输入条件,结合MEADS算法测量获得总压、动压、静压、攻角和侧滑角等飞行大气参数,成功克服了马赫数无关性对MEADS系统测量的影响。在低马赫数段(Ma≤12),直接应用MEADS算法测量静压、马赫数、攻角和侧滑角。测试结果表明在MEADS系统测压单元误差≤7 Pa的条件:总压测量误差≤14 Pa(1.5%),攻角测量误差≤0.9°,侧滑角测量误差≤0.9°,动压测量误差≤10 Pa(1.5%),静压测量误差≤7 Pa(3%),马赫数测量误差≤0.1。飞行试验数据得出:MEADS测量与IMU测量马赫数、攻角和侧滑角等结果基本一致。  相似文献   

13.
姜健  赵海刚  符小刚 《推进技术》2021,42(10):2249-2256
为了分析评估某型歼击机无隔道进气道附面层的排除特性,设计搭建鼓包表面附面层压力梯度测量试验系统,进行了不同飞行高度、马赫数和姿态角等工况下的飞行试验。通过对飞行试验数据的整理、计算和对比分析同型号的缩比模型风洞试验结果,研究了无隔道进气道鼓包表面附面层排除特性。研究结果表明:稳定平飞时,在亚音速范围内,随着飞行高度的增加,鼓包构型对附面层的排除效果增大,而在超音速范围内,变化规律相反;在接近马赫数1.8及以上飞行工况下,鼓包表面附面层的扫除能力有所减弱,附面层气流分离加速,进而会造成较大的进气压力损失和畸变。单纯迎角飞行有利于增强附面层的排除能力;而带侧滑角飞行时,附面层压力系数曲线的拐点沿鼓包中心线平行向“背风面”偏移,偏移量与侧滑角成正比,进气道鼓包表面“迎风面”附面层排除能力增大,而“背风面”受气流分离影响而减弱。  相似文献   

14.
MF-1模型飞行试验转捩结果初步分析   总被引:1,自引:0,他引:1  
中国空气动力研究与发展中心于2015年12月在中国酒泉卫星发射中心成功实施了MF-1航天模型飞行试验,试验模型为锥-柱-裙轴对称体,半锥角为7°。这是我国首次针对高超声速空气动力学基础问题研究的航天模型飞行试验,飞行最大马赫数5.3、最大高度63.4km,飞行迎角上升段0.5°、下降段5°。采用薄壁测温技术测量了锥面上50个点的温度数据,并采用三维热辨识方法给出了热流数据,从而判别转捩。初步分析表明,所获取的真实飞行条件下的上升段和下降段的转捩数据是可靠的,可用于验证与标定转捩预测模型;同时验证了现有转捩预测模型对于超声速/高超声速小攻角圆锥转捩起始点预测的可行性;发现了上升段湍流-层流的再层流化与下降段层流-湍流转捩的临界高度差别,以及约0.2mm的阶差即有可能诱发强制转捩。  相似文献   

15.
直升机稳定转弯飞行中的运动学问题研究   总被引:1,自引:0,他引:1       下载免费PDF全文
阐明了转弯飞行是直升机的基本机动科目,现有的运动学问题研究仅从性能的角度出发,分析转弯过程中的过载、转弯半径等,忽略了转弯过程中的迎角、侧滑角、姿态和角速度等运动参数的变化,因而不能合理地预测转弯过程中旋翼的真实能力、直升机的机动性能及飞行轨迹。文中着重介绍了一种直升机稳定转弯时的运动学分析方法,该方法建立了不同稳定转弯条件下,速度、迎角、侧滑角与过载系数、姿态、角速度之间的关系,定量分析了不同稳定转弯条件对直升机角速度和姿态的影响。  相似文献   

16.
在分析准确大气数据重要性及传统校准方法局限性的基础上,本文研究建立了基于机载激光测速的大气数据校准方法,涵盖了静压、空速、马赫数、温度、迎角和侧滑角等参数;总结了国外相关研究项目与验证成果;研究了国内试验条件建设需求,展望了机载激光测速技术未来在飞行试验及航线运营等领域的应用及发展。本文对后续开展相关研究具有一定的参考价值。  相似文献   

17.
以电子控制器冷却管道为研究对象,通过计算流体力学(CFD)仿真方法,计算飞机不同状态下冷却管道流量,并与试飞数据对比,分析误差,调整模型和边界条件,直至可接受范围。进而,运用该方法,建立大涵道比涡扇发动机平开口式通风口的模型,计算高度、速度、迎角、侧滑角等飞行状态条件下,通风口进气流量随参数的变化规律。结果表明,高度和速度参数对通风口进气流量影响很大:相同速度下,通风口进气总流量随高度的增加而减小;相同高度下,通风口进气总流量随速度的增加而增加;迎角和侧滑角对通风口进气总流量影响较小,迎角从负迎角增加到正迎角,进入短舱内部的冷却气流流量呈现先升高后降低的现象,在迎角0°附近达到峰值;侧滑角的变化对通风口进气流量影响不大。  相似文献   

18.
嵌入式大气数据传感系统风洞标定试验研究   总被引:1,自引:0,他引:1  
首先分析了嵌入式大气数据传感(Flush Airdata Sensing,FADS)系统的空气动力学模型,对于钝头布局的FADS系统,风洞试验需对迎角误差、侧滑角误差以及形压系数进行标定;对于锥形或非规则布局的FADS系统,空气动力学模型还需要通过风洞试验或飞行试验确定。选取锥形头部模型为试验对象在FD-06风洞中进行超声速试验,模型表面压力分布趋势合理可靠,试验表明:可使用纵平面的对称测压点压力差值解算迎角,使用水平面的对称测压点压力差值解算侧滑角。  相似文献   

19.
风洞张线支撑系统   总被引:4,自引:0,他引:4  
吴成 《国际航空》2004,(5):62-63
用张线支撑系统代替传统的风洞模型支架,不仅减小了对流场的干扰,而且可以扩大迎角和侧滑角的试验范围,很适用于导弹动力学、飞行控制和航空器试验  相似文献   

20.
民用飞机迎角传感器布局设计的首要目标是使得迎角信号具有高鲁棒性及高信噪比的品质。在迎角传感器布局设计中,迎角信号的高鲁棒性体现为迎角校线不受侧滑角因素影响,高信噪比体现为迎角校线受机身迎角因素影响明显。本文通过CFD方法研究了迎角传感器布局在某民机机身不同位置时迎角校线随机身迎角及侧滑角的变化规律;获得了迎角校线随侧滑角变化不敏感的机身区域,及迎角校线随机身迎角变化敏感的机身区域,即在机身最大半宽线附近。该研究可为迎角传感器的布局设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号