首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solar wind velocity and interplanetary magnetic field were unusually high late on 4 August and early on 5 August, 1972. The magnetopause was close to or below 6.6 R e from 2117 to 2318 UT and close to or below 5.1 R e from 2236 to 2318 UT on 4 August. The magnetosheath field near noon was several hundred gammas and frequently south during these intervals, and there was some evidence of field erosion. The entry of solar wind plasma into the inner magnetosphere during this period was not unusually high, however. Proton energy density was lower than in the storms of December 1971, and June 1972. The plasmapause steadily moved inward on 4 and 5 August; it reached 2 R e before expanding on 6 August. The unusually high amplitude magnetic pulsations commenced near 2240 UT, 4 August, and lasted until near noon on 5 August. Both the close magnetopause and the large pulsations appear to be due to the high solar wind velocity following the shock that reached Earth at 2054 UT on 4 August.  相似文献   

2.
At the beginning of the GEOS lifetime, some attempts have been made for taking advantage of the passes over Alaska. GEOS was then commanded in a fixed mode and the corresponding telemetry data were recorded at the NASA stations. For two passes over Jim Creek (48°2N–121°9W) where a powerful VLF transmitter (f 0 = 18.6 kHz) is located, GEOS was put in a specific mode in order to study the magnetospheric electromagnetic field in the vicinity of f 0. The results of one pass (June 11, from 0755 UT) are presented here.During this pass, a strong enhancement of all the e.m. components at f 0 has been observed for a specific period of time, when GEOS was very near to the exact conjugacy with NKL. The distance, as measured on the ground, over which the signal was above -6 dB from the maximum is of the order of 800 km. During the corresponding period of time (0740–0750 UT), the satellite altitude varied between 8000 and 6000 km. The magnetospheric region where the signal is strong appears to be structured, as if there were many ducts.Preliminary results concerning the polarization characteristics of the signal are presented. In the absence of precise measurements of these characteristics, the comparison between the electric and magnetic components of the received signal is not easy to interpret. An examination of the onboard computed correlograms (in the frequency range from f 0 -0.6 kHz to f 0 +3.3 kHz) shows that, for this pass, no VLF emissions were triggered by NKL, at the altitude of the satellite.  相似文献   

3.
The AE-C spacecraft skimmed through the southern polar cusp at a 400 km altitude during a large geomagnetic storm on September 21, 1977. This period has been designated as a special IMS period, and the AE-C data were acquired close to the times that data were acquired by the DMSP satellite at nearly the same location over the southern polar cap, and by the GEOS satellite located near the noon-meridian in the northern hemisphere. Low energy electrons (1-500 eV) were measured with the photoelectron spectrometer experiment experiment onboard AE-C. This instrument was operated in the mode which measured precipitating electron fluxes and backscattered electron fluxes in alternating 4s intervals with two sensors. A region of intense precipitating electron fluxes was observed near 0924 UT on September 21, 1977 extending from 69 degree invariant latitude at 1100 MLT to 72 degree invariant latitude at 1152 MLT. From the spectra of the precipitating electrons, this region is identified as the southern polar cusp. Since the K p equals 7- during this time, the displacement of the cusp down to these low latitudes is not unreasonable. Particle data obtained from the DMSP satellite on orbits close to AE-C, confirm that the position of the cusp was rapidly changing during this period, and was displaced to latitudes equatorward of the quiet time position. A second region of intense fluxes of precipitating electron was observed by AE-C at approximately 0933 UT from 69 degree invariant latitude near 1700 MLT to 66 degree invariant latitude near 1730 MLT. This region of low energy electron fluxes is characterized by slightly harder energy spectra and is interpreted as being the afternoon auroral zone. The remarkable and fortunate location of the AE-C, DMSP, and GEOS spacecraft during this special IMS period will allow future correlative studies aimed at the determination of the shape of the magnetosphere during very disturbed conditions.  相似文献   

4.
Conclusions The magnetosphere boundary has been penetrated in several places, conflicting evidence about the ring current location has been found, and the field exterior to the boundary has revealed some unexpected features. Pronouncements about the structure of the geomagnetic and interplanetary magnetic fields are still based on scanty evidence but the experimental basis of such estimates is more adequate than in 1958.The boundary between the geomagnetic field and the interplanetary medium has been found, by Explorer XII, to be located at approximately 10 R E on the sunlit side of the earth near the equator. It has been observed to fluctuate between 8 and 12 R E during August, September and October of 1961. During several days in March, 1961, the boundary, on the dark side of the earth, was penetrated repeatedly by Explorer X on an outbound pass near 135° from the earth-sun line. Several interpretations are possible; the most reasonable one at present is that the boundary was fluctuating in this period, placing the satellite alternately inside the geomagnetic field and outside in a region of turbulent magnetic fields and plasma flow.A region of turbulent magnetic fields was also observed by Pioneer I, Pioneer V, and Explorer XII between 10 and 15 R E on the sunlit side of the earth. Pioneer V observed also a steady field 2 to 5 gammas in magnitude beyond 20 R E. It appears that there exists a region of turbulent magnetic fields between the geomagnetic field boundary near 10 R E, and another boundary, located near 14–15 R E near the earth-sun line. This second boundary was seen only by Pioneer I and Pioneer V; Explorer XII and Explorer X apparently did not reach it. This boundary has been tentatively identified as a shock front in the flow of solar plasma about the magnetosphere (see Figure 5).41, 42 The geomagnetic field inside the boundary is relatively quiet. An abrupt transition in the magnitude of fluctuations occurs at the boundary surface. The ratio of fluctuation amplitude, B, to average field, B, decreases from 1 to 0.1 on a passage through the boundary on 13 September 1961.43 The boundary is not unstable in the solar wind but fluctuations in solar wind pressure do cause changes in boundary location.42,43 The ring current location appears to be above 1.4 R E and below 5 R E on the basis of Pioneer I, Vanguard III, and Explorer XII data. Lunik I and II records indicate that it is located between 3 and 4 R E. Explorer VI data indicates that it must be at distances greater than 4 R E on the dark side of the earth. Some variation in altitude of a ring current with time appears likely, but the bulk of present evidence limits a possible ring current to a distance of 3 to 5 R E.The interplanetary field during quiet times is of the order of 2 to 5 gammas. The direction indicated for this field, with a significant component perpendicular to the earth-sun line, is puzzling in view of solar cosmic ray transit times. Solar disturbances with resultant plasma flow past the satellite produce increases in the field magnitude. Field increases at the satellite are sometimes correlated with disturbances observed at the earth.Further investigations are needed to map the magnetosphere and boundary more completely, to investigate the postulated shock front and the turbulent region inside, to refute or confirm the ring current theory, and to measure the interplanetary field direction and magnitude more completely. Theoretical studies are needed to support these experiments and to suggest new avenues of investigations. Particularly needed are theoretical investigations of collisionless shock fronts in plasma flow and of characteristics of the flow between the shock front and the obstacle.  相似文献   

5.
The double probe, floating potential instrumentation on ISEE-1 is producing reliable direct measurements of the ambient DC electric field at the bow shock, at the magnetopause, and throughout the magnetosheath, tail plasma sheet and plasmasphere. In the solar wind and in middle latitude regions of the magnetosphere spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (a) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (b) that scale lengths for large changes in E at the sub-solar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (c) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting <0.2 s are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions. These suggest the existence of field phenomena occurring over dimensions comparable to the probe separation and c/pe (the characteristic electron cyclotron radius) where pe is the electron plasma frequency.  相似文献   

6.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The early ISEE orbits provided the opportunity to study the magnetopause and its environs only a few Earth radii above the subsolar point. Measurements of complete two-dimensional ion and electron distributions every 3 or 12 s, and of three-dimensional distributions every 12 or 48 s by the LASL/MPI instrumentation on both spacecraft allow a detailed study of the plasma properties with unprecedented temporal resolution. This paper presents observations obtained during four successive inbound orbits in November 1977, containing a total of 9 magnetopause crossings, which occurred under widely differing orientations of the external magnetic field. The main findings are: (1) The magnetosheath flow near the magnetopause is characterized by large fluctuations, which often appear to be temporal in nature. (2) Between 0.1 and 0.3R E outside the magnetopause, the plasma density and pressure often start to gradually decrease as the magnetopause is approached, in conjunction with an increase in magnetic field strength. These observations are in accordance with the formation of a depletion layer due to the compression of magnetic flux tubes. (3) In cases where the magnetopause can be well resolved, it exhibits fluctuations in density, and especially pressure and bulk velocity around average magnetosheath values. The pressure fluctuations are anticorrelated with simultaneous magnetic field pressure changes. (4) In ope case the magnetopause is characterized by substantially displaced electron and proton boundaries and a proton flow direction change from upwards along the magnetopause to a direction tranverse to the geomagnetic field. These features are in agreement with a model of the magnetopause described by Parker. (5) The character of the magnetopause sometimes varies strongly between ISEE-1 and -2 crossings which occur 1 min apart. At times this is clearly the result of highly non-uniform motions. There are also cases where there is very good agreement between the structures observed by the two satellites. (6) In three of the nine crossings no boundary layer was present adjacent to the magnetopause. More remarkably, two of the three occurred while the external magnetic field had a substantial southward component, in clear contradiction to expectations from current reconnection models. (7) The only thick (low-latitude) boundary layer (LLBL) observed was characterized by sharp changes at its inner and outer edges. This profile is difficult to reconcile with local plasma entry by either direct influx or diffusion. (8) During the crossings which showed no boundary layer adjacent to the magnetopause, magnetosheath-like plasma was encountered sometime later. Possible explanations include the sudden formation of a boundary layer at this location right at the time of the encounter, and a crossing of an inclusion of magnetosheath plasma within the magnetosphere. (9) The flow in the LLBL is highly variable, observed directions include flow towards and away from the subsolar point, along the geomagnetic field and across it, tangential and normal to the magnetopause. Some of these features clearly are nonstationary. The scale size over which the flow directions change exceeds the separation distance (several hundred km) of the two spacecraft.  相似文献   

8.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   

9.
The Earth's magnetopause is the boundary between a hot tenuous plasma in the magnetosphere and a cooler denser plasma in the magnetosheath. Both of these plasmas contain magnetic fields whose directions are usually different but whose magnitudes are often comparable. Efforts to understand the structure of the magnetosphere have been hampered by the variability and complexity of this boundary. Waves on the magnetopause surface propagate toward the magnetotail and produce the multiple boundary crossings frequently seen by spacecraft. Boundary velocities are poorly known and range anywhere within an order of magnitude of 10 km s–1. Typical thicknesses are probably on the order of a few hundred km which is a few times the gyroradius of a thermal proton. Although conclusive direct evidence for a field component, B n , across the magnetopause has not been found, this lack of evidence may reflect the difficulty in determining B n in the presence of magnetopause waves rather than the real absence of this component. Considerable indirect evidence exists for an open magnetosphere, but the importance of the reconnection process thought to produce open field lines has recently been questioned.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

10.
The interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is considered. We consider the general case when the interplanetary magnetic field is oblique to the Sun-planetary axis, thus, the interplanetary shock is neither parallel nor perpendicular. We find that an ensemble of shocks are produced after the interaction for a representative range of shock Mach numbers. First, we find that the system S + R CS S + appears after the collision of travelling fast shock waves S + (Mach number M = 2 to 7) with the bow shock. Here, S and R represent the slow shock wave and slow rarefaction wave, and C represents the contact surface. It is shown that in the presence of an interplanetary field that is inclined by 45° to the radial solar wind velocity vector, the waves R and S are weak waves and, to the first degree of approximation, the situation is similar to the previously studied normal perpendicular case. The configuration, R + C m S S + or R + C m R S + where C m is the magnetopause, appears as the result of the fast shock wave's collision with the magnetopause. In this case the waves S and R are weak. The fast rarefaction wave reflected from the magnetosphere is developed similar to the case for the collision of a perpendicular shock. The shock wave intensity is varied for Mach numbers from 2 to 10. Thus, in the limits of the first approximation, the validity of the one-dimensional consideration of the nonstationary interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is proved. The appearance of the fast rarefaction wave, R 4, decreasing the pressure on the magnetosphere of the Earth after the abrupt shock-like contraction, is proved. A possible geomagnetic effect during the global perturbation of the SSC or SI+ type is discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

11.
Three-dimensional distributions for 24.0–44.5 keV protons (ions) are presented from the ISEE-1 medium energy particles instrument during a magnetopause traversal at 01:10 UT on 20 November 1977. Local time of the traversal was 1030. Ion fluxes were observed coming generally from the subsolar region, but over a wide range of latitudes. Enhanced fluxes were observed at the magnetopause crossing with strong components from the subsolar region and from the +Z SE direction. These observations are compared with the simultaneous electric field observations presented by Mozer et al. (1978). Ion streaming in a direction consistent with the Y-component of the drift velocity was observed whereas streaming along the X and Z-components is not seen. Based on energy arguments we conclude that in this case, 24 keV ions are not the major energy carrier of the locally measured · dissipation.  相似文献   

12.
According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k \|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic.  相似文献   

13.
Transient phenomena in the magnetotail and their relation to substorms   总被引:1,自引:0,他引:1  
Recent observations of magnetic field, plasma flow and energetic electron anisotropies in the magnetotail plasma sheet during substorms have provided strong support for the idea that a magnetospheric substorm involves the formation of a magnetic neutral line (the substorm neutral line) within the plasma sheet at X SM — 10R E to -25R E. An initial effect, in the tail, of the neutral line's formation is the severance of plasma sheet field lines to form a plasmoid, i.e., a closed magnetic loop structure, that is quickly (within 5–10 min) ejected from the tail into the downstream solar wind. The plasmoid's escape leaves a thin downstream plasma sheet through which plasma and energetic particles stream continuously into the solar wind, often throughout the duration of the substorm's expansive phase. Southward oriented magnetic field threads this tailward-flowing plasma but its detection, as an identifier of the occurrence of magnetic reconnection, is made difficult by the thinness and turbulence of the downstream plasma sheet. The thinning of the plasma sheet downstream of the neutral line is observed, by satellites located anywhere but very close to the tail's midplane, as a plasma dropout. Multiple satellite observations of plasma droputs suggest that the substorm neutral line often extends across a large fraction (> ) of the tail's breadth. Near the time of substorm recovery the substorm neutral line moves quickly tailward to a more distant location, progressively inflating the closed field lines earthward of it, to reform the plasma sheet.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

14.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

15.
In this paper I am reviewing recent advances and open disputes in the study of the terrestrial ring current, with emphasis on its storm-time dynamics. The ring current is carried by energetic charged particles flowing toroidally around the Earth, and creating a ring of westward electric current, centered at the equatorial plane and extending from geocentric distances of about 2 R E to roughly 9 R E. This current has a permanent existence due to the natural properties of charged particles in the geospace environment, yet its intensity is variable. It becomes more intense during global electromagnetic disturbances in the near-Earth space, which are known as space (or magnetic or geomagnetic) storms. Changes in this current are responsible for global decreases in the Earth's surface magnetic field, which is the defining feature of geomagnetic storms. The ring current is a critical element in understanding the onset and development of space weather disturbances in geospace. Ring current physics has long been driven by several paradigms, similarly to other disciplines of space physics: the solar origin paradigm, the substorm-driver paradigm, the large-scale symmetry paradigm, the charge-exchange decay paradigm. The paper addresses these paradigms through older and recent important investigations.  相似文献   

16.
Plasma waves at the dayside magnetopause   总被引:1,自引:0,他引:1  
Experimental investigations of plasma waves at the magnetopause, including recent results from the AMPTE/IRM satellite, show that both E and B fluctuations typically have a featureless spectrum which monotonically decreases with frequency; integrated rms amplitudes are typically a few mV m-1 for E and 10 nT for B, though in particular E can be as much as an order of magnitude larger in exceptional cases. Surveys show a lack of correlation between wave parameters and the magnetopause parameters. Under the assumption that crossing the diffusion region would give a pronounced signature in the waves, the survey data allow an upper limit to be placed on the latitudinal extent of the diffusion region, which is about 1000 km — implying that it is not surprising that the wave data surveys have so far failed to detect it. The observed wave turbulence levels have been used to estimate diffusion coefficients under different assumptions for the wave mode, but the resulting diffusion coefficient is always too small to explain either reconnection or boundary layer formation. Recent work of Galeev et al. (1986) indicates that the dominant diffusion process may be magnetic field migration, which is a macroscopic process involving the interaction of tearing mode islands. Assuming this mode to be present at the observed level of B, a particle diffusion coefficient of nearly 109 m2 s-1 is obtained. Another macroscopic diffusive process which could occur at the magnetopause is stochastic E × B scattering, which also implies a diffusion coefficient the order of 109 m2 s-1 if the observed E spectrum is assumed to be a turbulent cascade consisting of convective cells.  相似文献   

17.
Electric field measurements are reported at 11 magnetopause crossings that occurred during a single in-bound ISEE-1 satellite pass near a local time of 1030. In combination with magnetic field data, these measurements show the existence of electric field components tangential to the actual magnetopause in the frame of rest of the magnetopause on every crossing of the current carrying layers associated with the 11 magnetopause traversals. These tangential electric field components were oriented with respect to the magnetopause sheet currents such that there was an electrical power dissipation of between 30 and 110 W km-2 on 10 of the 11 crossings. These results are in agreement with requirements of reconnection theories. Histograms of the normal electric field components and of the orientation, velocity, and thickness of the current carrying layer are presented. Suggestions of the existence of a parallel electric field in the magnetosheath near the magnetopause and of propagation of large amplitude waves along the magnetopause are also made.  相似文献   

18.
The ionic charge of solar energetic particles (SEP) as observed in interplanetary space is an important parameter for the diagnostic of the plasma conditions at the source region and provides fundamental information about the acceleration and propagation processes at the Sun and in interplanetary space. In this paper we review the new measurements of ionic charge states with advanced instrumentation onboard the SAMPEX, SOHO, and ACE spacecraft that provide for the first time ionic charge measurements over the wide energy range of ∼0.01 to 70 MeV/nuc (for Fe), and for many individual SEP events. These new measurements show a strong energy dependence of the mean ionic charge of heavy ions, most pronounced for iron, indicating that the previous interpretation of the mean ionic charge being solely related to the ambient plasma temperature was too simplistic. This energy dependence, in combination with models on acceleration, charge stripping, and solar and interplanetary propagation, provides constraints for the temperature, density, and acceleration time scales in the acceleration region. The comparison of the measurements with model calculations shows that for impulsive events with a large increase of Q Fe(E) at energies ≤1 MeV/nuc the acceleration occurs low in the corona, typically at altitudes ≤0.2 R S .  相似文献   

19.
The present article reviews recent studies about near-Earth substorm processes. A focus is placed on the relationship between two fundamental processes, that is, tail current disruption (TCD) and the formation of a near-Earth neutral line (NENL). The former is inferred to cause dipolarization, and the latter is often associated with the fast plasma flow in the plasma sheet. Whereas it is inferred from the directions of fast plasma flows that the NENL is formed at 20–30 R E from the Earth, dipolarization is most manifest in the near-Earth (6.6–12 R E) region. The observation of the fast plasma flow prior to substorm (Pi2) onsets favors the idea that the NENL is formed first and dipolarization is the effect of the pile-up of magnetic flux convected earthward from the NENL, which is called the pile-up model. The present paper addresses several outstanding issues regarding this model, including (1) the interpretation of plasma flow deceleration in terms of the flux pile up, (2) highly irregular magnetic fluctuations observed in the near- Earth region, (3) the spatial coherency of the fast plasma flow, (4) the spatial structure and expansion of dipolarization region, and (5) the explosive growth phase. The paper also proposes the possibility that TCD is an independent process, but the formation of the NENL sets a favorable condition for it.  相似文献   

20.
We review important studies in the field of stratosphere-ionosphere coupling, including recent studies of wave motions of planetary waves, atmospheric tides and internal gravity waves in the atmosphere. The interrelation between stratospheric sudden warmings and winter anomaly of radio absorption, a dynamical model of stratospheric sudden warmings and some production mechanisms of intensified electron density in the D region are discussed. Other topics presented are atmospheric tides in the lower thermosphere including dynamo action, and internal gravity waves, by which we intend to explain travelling ionospheric disturbances in the F 2 region and sporadic E layer at midlatitude (wave-enhanced sporadic E). Thermospheric winds are also reviewed and wind effects on the F 2 layer are discussed. For each atmospheric event systematic observations of suitable physical quantities with proper time and spatial intervals are desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号