首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
火星探测器飞行轨道设计   总被引:1,自引:0,他引:1  
在一些基本假设的基础上,初步设计了从地球停泊轨道发射探测器到达火星的飞行轨道。运用圆锥曲线拼接法,设计了采用双共切和单共切两种不同的日心段转移方式时,探测器日心段、地心段和火星中心段的飞行轨道,并分析比较了这两种设计方法的特点。根据限制性二体问题动力学模型,仿真计算了探测器在不同轨道段的飞行轨迹,结果表明,探测器可以按照所设计的轨道飞行到达火星,并被其捕获,成为环绕火星飞行的卫星。  相似文献   

2.
环火探测器的摄动分析解对于分析探测器轨道运动规律以及星载计算具有比较重要的意义。针对火星非球形引力摄动影响下环火探测器的运动,采用频率分析方法,对环火探测器轨道运动进行仿真,得到了与KAM理论一致的结果,在火星非球形引力摄动作用下的环火探测器轨道位于一个不变环面,可由3个角变量的频率描述。利用该方法,采用数值方法构建轨道运动的分析表达式,通过与数值积分结果的比对,证明该分析表达式具有较好的精度,适合长时间的轨道外推,可以满足航天任务的星载应用需求。该方法不仅可以给出环火探测器在任意时刻的轨道状态量,同时可以较高精度地确定3个角变量的变化率,反映一定的轨道变化规律。  相似文献   

3.
为了解环火星探测器的运动规律,就要构造环火星探测器的轨道分析解,这会涉及2个火星自然卫星的分析历表,因而需要首先构造它们的轨道分析解。由于火星与地球类似,参照建立人造地球卫星轨道摄动解的方法,构造火星自然卫星轨道的摄动分析解,分离出短周期项,即可给出所需要的历表计算公式。将其与JPL网站上提供的历表进行比对,结果表明,所采用的数学模型以及构造轨道摄动解的方法均有效,能够达到期望的精度。  相似文献   

4.
庞之浩 《国际航空》2014,(10):74-77
2014年,国际空间探测活动十分活跃。欧洲的罗塞塔彗星探测器于8月进入了彗星67P的近距轨道;美国和印度的火星探测器分别于9月进入火星轨道;日本则计划在2014年年底用H-2A火箭发射第2个小行星探测器“隼”-2。  相似文献   

5.
北京中心深空探测器精密定轨与分析软件系统   总被引:2,自引:0,他引:2  
介绍了北京航天飞行控制中心针对火星探测任务所研制的深空探测器精密定轨与分析软件系统,描述了该软件系统开发的需求、功能设计和当前已经具备的能力,并用该软件进行了初步计算试验,结果表明该软件在MEX火星探测器定轨精度上可以达到与ESA的火星定轨精度相当的水平。此外,文章还给出了YH-1探测器定轨精度的初步仿真分析。  相似文献   

6.
地面站利用低轨卫星进行通信时,地面接收站接收信号存在明显的多普勒频移现象。为描述多普勒频移特性,首先分析卫星轨道偏心率对多普勒特性曲线的影响,分析表明:轨道偏心率越大,地面站接收信号多普勒变化率越大。其次,推导了卫星多普勒频移的计算表达式,并讨论了低轨卫星多普勒频移特性曲线的快速计算。仿真计算结果表明,该算法可以很好地描述任意低轨道卫星多普勒频移特性,并明显缩短了精确算法的计算时间,对于10 000km轨道高度卫星,算法置信度可达99%以上。  相似文献   

7.
对月球探测器的测控通信,通信距离遥远,信号空间损耗大,地面站接收机灵敏度高,因此更易受到外来信号干扰的影响。本文根据卫星网络间同频干扰计算方法,分析月球探测器测控通信下行链路受地球轨道卫星发射信号的干扰问题,主要包括月球探测器受地球静止轨道卫星(GEO)和地球非静止轨道卫星(NGSO)的干扰分析。在此基础上实现了仿真,计算其受干扰的可能性。  相似文献   

8.
椭圆轨道星座构型稳定性要求同时实现升交点赤经、近地点幅角和平近点角的稳定。通过初始偏差对椭圆轨道卫星的长期影响分析可知,轨道半长轴、倾角和偏心率的初始偏差对升交点赤经、近地点幅角和平近点角的长期摄动变化是线性的,因此通过主动偏置轨道半长轴、偏心率和倾角能够实现椭圆轨道星座构型的自稳定设计,从而提高其构型稳定性。对实例星座的设计结果表明,自稳定设计方法对提高椭圆轨道星座的构型稳定性是有效的。  相似文献   

9.
吴爱国  巩志浩 《航空学报》2020,41(9):324292-324292
针对火星探测器的气动捕获轨道,提出了一种改进的鸽群算法对气动捕获轨道进行优化。首先,考虑成功进行气动捕获所要求的终端约束和过程约束,根据从捕获轨道进行轨道转移进入目标轨道所需的速度增量,提出了进行捕获轨道优化的最优性能指标。然后,针对原始鸽群算法存在的一些不足,提出一种改进算法,并对改进算法的参数取值进行了分析。最后,基于大气内飞行的动力学方程,将气动捕获轨道优化问题转化为多参数优化问题,利用所提出的改进鸽群算法对气动捕获轨道进行优化,并通过仿真实例验证该算法的有效性。  相似文献   

10.
针对载人月球软着陆进程中,由载人飞船发动机失效引起的任务中止问题,首先分析主发动机失效可能引起的撞月轨道、环绕轨道、逃逸轨道等轨道类型及其特点;然后分析了中止任务执行的前提条件及中止过程的导航制导要求,在此基础上,考虑二体模型,提出普适的共面软着陆中止轨道计算方法;最后,在考虑登月飞船生保系统时间限制条件下,给出下降级主发动机失效情况下,撞月轨道的中止仿真算例。仿真结果表明,该方法可以实现登月飞船软着陆制动故障情形下的任务中止,能够确保飞船安全返回环月轨道。  相似文献   

11.
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. It would enter aerosynchronous orbit and from there, beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The latest version of the spacecraft, the technologies used, and trip times to Mars are presented. The POWOW spacecraft is a general purpose solar electric propulsion system that uses new technologies that are directly applicable to commercial and government spacecraft with power levels ranging from a LEO power level of 4 kW up to GEO spacecraft about 1 MW. The system is modular, expandable, and amenable to learning curve cost projection methods  相似文献   

12.
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)).  相似文献   

13.
The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.  相似文献   

14.
Liquid water is a basic ingredient for life as we know it. Therefore, in order to understand the habitability of other planets we must first understand the behavior of water on them. Mars is the most Earth-like planet in the solar system and it has large reservoirs of H2O. Here, we review the current evidence for pure liquid water and brines on Mars, and discuss their implications for future and current missions such as the Mars Science Laboratory. Neither liquid water nor liquid brines are currently stable on the surface of Mars, but they could be present temporarily in a few areas of the planet. Pure liquid water is unlikely to be present, even temporarily, on the surface of Mars because evaporation into the extremely dry atmosphere would inhibit the formation of the liquid phase, where the temperature and pressure are high enough so that water would neither freeze nor boil. The exception to this is that monolayers of liquid water, referred to as undercooled liquid interfacial water, could exist on most of the Martian surface. In a few places liquid brines could exist temporarily on the surface because they could form at cryogenic temperatures, near ice or frost deposits where sublimation could be inhibited by the presence of nearly saturated air. Both liquid water and liquid brines might exist in the shallow subsurface because even a thin layer of soil forms an effective barrier against sublimation allowing pure liquid water to form sporadically in a few places, or liquid brines to form over longer periods of time in large portions of the planet. At greater depths, ice deposits could melt where the soil conductivity is low enough to blanket the deeper subsurface effectively. This could cause the formation of aquifers if the deeper soil is sufficiently permeable and an impermeable layer exists below the source of water. The fact that liquid brines and groundwater are likely to exist on Mars has important implications for geochemistry, glaciology, mineralogy, weathering and the habitability of Mars.  相似文献   

15.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   

16.
火星中继已作为火星探测重要组成部分,被美国NASA(National Aeronautics and Space Administration,国家航空航天局)和ESA(European Space Agency,欧空局)广泛应用于火星EDL(Entry,Descent and Landing,进入、下降和着陆)以及火星表面探测中。针对该情况,介绍了火星中继系统的组成和工作情况。结合NASA和ESA火星探测的成功经验和成果,重点对火星轨道器和着陆器的中继应答机的性能进行了梳理和分析,并对该技术的后续发展进行了展望。基于此,可为我国自主火星探测提供借鉴和参考。  相似文献   

17.
18.
火星地表崎岖、环境复杂,火星无人机由于其具有高机动性和灵活性,为火星探测提供了一种新的工作模式,是未来深空探测的重要范式。本文对比了火星与地球相关地表环境参数的差异,分析了火星无人机需要克服的困难和主要用途,阐明了火星无人机实验台的重要性;详细介绍了国内外研究机构研发火星无人机实验台的技术特点与功能优劣,总结了实验台需要具备的模拟火星环境和测量相关参数。在此基础上,提出了构建火星无人机实验台设想,给出了总体设计思想和思路,并对火星无人机气动力学实验平台的应用前景进行了展望。  相似文献   

19.
One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency’s (ESA’s) ExoMars rover mission and is considered a fundamental instrument to achieve the mission’s scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey’s seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号