共查询到20条相似文献,搜索用时 15 毫秒
1.
J. C. Mandeville 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1991,11(12):93-96
Upon the last joint Soviet-French mission on the MIR Space Station, on December 1988, an experiment devoted to the collection and detection of cosmic dust and space debris has been deployed in space during 13 months.
A variety of sensors and collecting devices has make possible the study of effects and distribution of cosmic particles after recovery of exposed material. Remnants of particles, suitable for chemical identification are expected to be found within the stacked foil detectors. Discrimination between true cosmic particles and man-made orbital debris is expected.
Some preliminary results are presented here. 相似文献
2.
F Ferguson L U Lilleleht J Nuth J R Stephens E Bussoletti L Carotenuto L Colangeli P Dell'Aversana F Mele V Mennella C Mirra 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):423-426
We have undertaken a project called STARDUST which is a collaboration with Italian and American investigators. The goals of this program are to study the condensation and coagulation of refractory materials from the vapor and to study the properties of the resulting grains as analogs to cosmic dust particles. To reduce thermal convective currents and to develop valuable experience in designing an experiment for the Gas-Grain Simulation Facility aboard Space Station Freedom we have built and flown a new chamber to study these processes under periods of microgravity available on NASA's KC-135 Research Aircraft. Preliminary results from flights with magnesium and zinc are discussed. 相似文献
3.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(1):21-30
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ ≈ 0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05–0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ ≈ 0.5 from one side, and ground-based observations in the UV–visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol. 相似文献
4.
J. -C. Worms 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(12):2527-2535
Regoliths are a most important component of solar system bodies. The study of their formation and evolution depends upon measurements from orbiting spacecraft or Earth-based observations, and by the development of models addressing formation and evolution scenarios, physical properties and composition of the constituent materials. For asteroids and comets, recent measurements tend to confirm the idea of extremely low bulk densities. The porosity of the outermost regolith layers should thus reach very high values. Regolith formation and growth partly depends upon gravity and mechanical properties of its constituent particles, which are very poorly documented. Gravitational effects play an important role in the shaping processes of large bodies, while material strength properties are more important for smaller bodies. The understanding of both, aggregation processes of, and of light scattering from, such media, would strongly benefit from experiments led under microgravity, and provide insight into regolith formation processes: much lower collision and aggregation velocities can be achieved in a microgravity environment, leading to the formation of much fluffier aggregates than possible on Earth. ICAPS is a multi-year scientific programme to simulate cosmic and atmospheric particle systems on board the International Space Station. The ICAPS facility will allow to build simulated regolith and thus enable the study of their mechanical and optical properties. Measurements such as tensile strength, electrical and thermal conductivities, compressibility and porosity, will be made, as well as monitoring of collisions into such simulated regolith. The article discusses the ICAPS research plan for regolith studies and the facility current status. 相似文献
5.
T.P. Dachev J. Semkova B. Tomov Yu. Matviichuk Pl. Dimitrov R. Koleva St. Malchev G. Reitz G. Horneck G. De Angelis D.-P. Häder V. Petrov V. Shurshakov V. Benghin I. Chernykh S. Drobyshev N.G. Bankov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected. 相似文献
6.
Martha S. Hanner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):189-196
Measurements of the thermal emission from the cometary dust coma can be used to derive the rate of dust production from the nucleus as well as the size distribution of absorbing grains. More than ten short-period comets have now been observed in the infrared over a wide range in heliocentric distance. Dust production rates are derived for these comets based on theoretical models of the thermal emission from small absorbing grains and calculations of dust grain velocities. The mean size and albedo of the dust grains is similar in these comets, with the exception of Comet Crommelin, which seems to have had larger, darker grains. 相似文献
7.
E Rabbow P Rettberg C Baumstark-Khan G Horneck 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(6):1513-1524
In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system reacts with a dose-dependent reduction of GFP-fluorescence. Currently, a fully automated miniaturized hardware system for the bacterial set up, which includes measurements of luminescence and fluorescence or absorption and the image analysis based evaluation is under development. During the first mission of the SOS-LUX-LAC-FLUORO-Toxicity-Test on the ISS, a standardized, DNA-damaging radiation source still to be determined will be used as a genotoxic inducer. A panel of recombinant Salmonella typhimurium strains carrying either the SOS-LUX plasmid or the fluorescence-mediating lac-GFPuv plasmid will be used to determine in parallel on one microplate the genotoxic and the cytotoxic action of the applied radiation in combination with microgravity. Either in addition to or in place of the fluorometric measurements of the cytotoxic agents, photometric measurements will simultaneously monitor cell growth, giving additional data on survival of the cells. The obtained data will be available on line during the TRIPLE-LUX mission time. Though it is the main goal during the TRIPLE-LUX mission to measure the radiation effect in microgravity, the SOS-LUX-LAC-FLUORO-Toxicity-test in principle is also applicable as a biomonitor for the detection and measurement of genotoxic substances in air or in the (recycled) water system on the ISS or on earth in general. 相似文献
8.
J. C. Mandeville J. A. M. McDonnell W. M. Alexander 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(12):189-191
A low power high reliability impact sensor based on the discharge of a parallel plate capacitor is described. The choice of a surface area of about 1000 cm2 and a penetration thickness of 50 micrometers will provide data on the flux density of cometary dust particles in the 5 micrometers diameter range (10−10g). A high noise immunity promotes excellent reliability under conditions of heavy spacecraft bombardment and high plasma densities in the late stages of the 500 km approach distance. Self-limiting of the event rate compression system also provides flux data at arbitrarily high impact rates. The capacitor sensor will be located on the external face of the outer dust shield of Giotto Spacecraft and it will be a part of the DIDSY experiment. 相似文献
9.
E Brinckmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):779-788
Two ESA facilities will be available for plant research and other biological experiments on the International Space Station: the Modular Cultivation System (MCS) and BIOLAB. While BIOLAB will be launched with the European "Columbus" Module, MCS will be part of the Early Utilisation Agreement with NASA and integrated in the US Lab. Both facilities use standard Experiment Containers, mounted on two centrifuge rotors providing either microgravity or variable g-levels up to 2xg. Transparent covers allow illumination and observation (also near-infrared) of the internal experiment hardware containing the plant specimen. Standard interface plates provide each container with power and data lines, gas supply (controlled CO2, O2 and water vapour concentration; ethylene removal), and--for MCS only--connectors to water reservoirs. Besides the two concepts of environmental control in both facilities, there is a difference in container size (BIOLAB 0.36 l, height with respect to the g-vector 60 mm; MCS 0.58 l, height 160 mm) and in the degree of automation. The design of BIOLAB and MCS will be complimentary to NASA's Plant Research Unit (volume 20 l, height 380 mm) and should allow continuation of Space research on protoplasts, callus cultures, algae, fungi and seedlings, as earlier flown on Biorack, and new experiments with larger specimens of fungi, mosses and vascular plants. 相似文献
10.
11.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1923-1927
Reacceleration of cosmic rays produced by galactic sources on the galactic wind termination shock is considered. The problem of the cosmic ray spectrum continuity is investigated. Numeric results are presented and discussed. We found that a smooth spectral transition from the galactic cosmic rays to the cosmic rays reaccelerated at the galactic wind termination shock is difficult to produce, if the maximum energy of accelerated particles is the same throughout the surface of the termination shock. The possible solution of this problem is the non-spherical termination shock with different maximum energies at different places of the shock. 相似文献
12.
“国际空间站”飞行控制及测控通信支持分析 总被引:1,自引:0,他引:1
1998年11月,随着“国际空间站”(ISS)曙光号(Zarya)多功能舱的发射,休斯敦和莫斯科的“国际空间站”飞控人员和工程保障队开始联合行动,实施对“国际空间站”的飞行控制和测控通信支持。此后,“国际空间站”不断发展,参与的国家和组织逐渐增多,其飞行控制和测控通信基础设施也逐渐发展成为分属多个国家和组织、遍布世界各地的地基设施和天基设施组成的系统,支持多种接口协议和标准。本文介绍支持“国际空间站”飞行控制与测控通信的主要地基设施(7个控制中心和2个地面通信网)和天基设施(4个数据中继卫星系统),并在分析“国际空间站”飞行控制与测控通信支持能力现状的基础上,展望其未来的发展趋势。 相似文献
13.
K.L. Bryson Z. Peeters F. Salama B. Foing P. Ehrenfreund A.J. Ricco E. Jessberger A. Bischoff M. Breitfellner W. Schmidt F. Robert 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In March of 2009, the ORGANIC experiment integrated into the European multi-user facility EXPOSE-R, containing experiments dedicated to Astrobiology, was mounted through Extra Vehicular Activity (EVA) externally on the International Space Station (ISS). The experiment exposed organic samples of astronomical interest for a duration of 97 weeks (∼22 months) to the space environment. The samples that were returned to Earth in spring 2011, received a total UV radiation dose during their exposure including direct solar irradiation of >2500 h, exceeding the limits of laboratory simulations. We report flight sample preparation and pre-flight ultraviolet–visible (UV–Vis) characterization of the ORGANIC samples, which include 11 polycyclic aromatic hydrocarbons (PAHs) and three fullerenes. The corresponding time-dependent ground control monitoring experiments for ORGANIC measured over ∼19 months are presented and the results anticipated upon return of the samples are discussed. We present the first UV–Vis spectrum of solid circobiphenyl (C38H16). Further, we present the first published UV–Vis spectra of diphenanthro[9,10-b′,10′-d]thiophene (C28H16S), dinaphtho[8,1,2-abc,2′,1′,8′-klm]coronene (C36H16), tetrabenzo[de,no,st,c′d′]heptacene (C42H22), and dibenzo[jk,a′b′]octacene (C40H22) in solid phase and in solution. The results of the ORGANIC experiment are expected to enhance our knowledge of the evolution and degradation of large carbon-containing molecules in space environments. 相似文献
14.
Z. Kolísková L. Sihver I. Ambro?ová T. Sato F. Spurný V.A. Shurshakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level. 相似文献
15.
16.
V.B. Baranov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath. 相似文献
17.
O A Kuznetsov C S Brown H G Levine W C Piastuch M M Sanwo-Lewandowski K H Hasenstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):651-658
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. 相似文献
18.
M. Ishiguro Y. Sarugaku S. Nishihara Y. Nakada S. Nishiura T. Soyano K. Tarusawa T. Mukai S.M. Kwon S. Hasegawa F. Usui M. Ueno 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Cometary dust trails were first observed by IRAS; they are widely known to be the origins of meteoric showers. A new window has been opened for the study of dust trails, using ground-based observations. We succeeded in obtaining direct images of the 22P/Kopff dust trail with the Kiso 1.05-m Schmidt telescope. Following this initial success, we have continued to perform a dust trail survey at Kiso. As a result of this survey, we have detected dust trails along the orbit of six periodic comets, between February 2002 and March 2004. The optical depth of these dust trails are 10−9 to 10−8, which is consistent with IRAS measurements. In this paper, we describe the observations and data reduction procedures, and report the brief result obtained between February 2002 and March 2004. 相似文献
19.
B.G.B. Solheim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The European Modular Cultivation System (EMCS) on the ISS allows long-term biological experiments, e.g. on plants. Video cameras provide near real-time 2D images from these experiments. A method to obtain 3D coordinates and stereoscopic images from these 2D images has been developed and is described in this paper. The procedure was developed to enhance the data output of the MULTIGEN-1 experiment in 2007. One of the main objectives of the experiment was to study growth movements of the Arabidopsis plants and the effect of gravity on these. 3D data were important during parts of the experiment and the paper presents the method developed to acquire 3D data, the accuracy of the data, limitations to the technique and ways to improve the accuracy. Sequences of 3D data obtained from the MULTIGEN-1 experiment are used to illustrate the potential of this newfound capability of the EMCS. In the experiment setup, a positional depth accuracy of about ±0.4 mm for relative object distances and an absolute depth accuracy of about ±1.4 mm for time dependent phenomena was reached. The ability to both view biological specimens in 3D as well as obtaining quantitative 3D data added greatly to the scientific output of the MULTIGEN-1 experiment. The uses of the technique to other researchers and their experiments are discussed. 相似文献
20.
S.A. Elwakil M.A. Zahran E.K. El-Shewy A.E. Mowafy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region. 相似文献