共查询到20条相似文献,搜索用时 0 毫秒
1.
W A Schutte 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):53-60
An absorption feature at 3.4 micrometers has been observed in various lines-of-sight through the diffuse interstellar medium. Its position and width lead to an identification with the C-H stretching mode of solid organic material. A possible mechanism for the production of organic solids in the interstellar medium is UV photoprocessing of icy mantles which accrete on dust grains in dense clouds. Furthermore, thermally induced reactions involving formaldehyde molecules in the mantles could be an important source of organics. Laboratory simulation of these processes shows that a large variety of oxygen- and nitrogen-rich species may be produced. It is shown that the occurrence of periodic transient heating events plays an important role in the production of organic material in the ice mantles. Finally, it is pointed out how future missions like the Infrared Space Observatory (ISO) as well as analysis of comet material by Rosetta may be able to clarify the nature and evolution of interstellar organics. 相似文献
2.
M P Bernstein L J Allamandola S A Sandford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):991-998
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life. 相似文献
3.
W A Schutte L J Allamandola S A Sandford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):401-406
We have investigated thermally promoted reactions of formaldehyde (H2CO) in very low temperature ices. No such reactions occurred in ices of pure formaldehyde. However, addition of trace amounts of ammonia (NH3) were sufficient to catalyze reactions at temperatures as low as 40 K. Similar reactions could take place in interstellar ices and in Comets and produce considerable amounts of organic molecules. 相似文献
4.
P F Bernath 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):15-23
The pure carbon molecules Cn are currently of great experimental and theoretical interest. Our work in this area begins with detection of the SiC molecule, which is isovalent with C2. New infrared electronic transitions of C2 and C3 were discovered by emission spectroscopy of hydrocarbon dicharges. The C3 and C5 molecules were found by infrared vibration-rotation spectroscopy of the prototypical obscured carbon star, IRC+10216. C7 and C9 were searched for in the same source, but not found. The laboratory infrared emission spectrum of C60 was recorded to aid in a search for C60 in extraterrestrial sources. 相似文献
5.
6.
G Strazzulla M E Palumbo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):237-243
Some results, recently obtained from laboratory experiments of ion irradiation of ice mixtures containing H, C, N, and O, are here summarized. They are relevant to the formation and evolution of complex organics on interstellar dust, comets and other small bodies in the external Solar System. In particular the formation of CN-bearing species is discussed. Interstellar dust incorporated into primitive Solar System bodies and subsequently delivered to the early Earth, may have contributed to the origin of life. The delivery of CN-bearing species seems to have been necessary because molecules containing the cyanogen bond are difficult to be produced in an environment that is not strongly reducing as that of the early Earth probably was. Moreover we report on an ongoing research program concerning the interaction between refractory materials produced by ion irradiation of simple ices and biological materials (amino acids, proteins, cells). 相似文献
7.
F Raulin K Kobayashi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):185-187
During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system. 相似文献
8.
L Colangeli V Mennella E Bussoletti G M Piacentino 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):43-46
We present in this paper a simulation of cometary spectra between 3 and 4 micrometers performed by using the optical properties of various carbon-based materials measured at different temperatures in the range 300-520 K. In our computations we have used new laboratory data obtained for hydrogenated amorphous carbon (HAC) grains and three kinds of polycyclic aromatic hydrocarbons (PAHs). All these materials show significant features in the near IR region; however, only the synthetic spectra obtained from HAC grains show a satisfactory agreement with the profile of the cometary bands. 相似文献
9.
M Dobrijevic J P Parisot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(10):1-4
A numerical model of CH4 and CH4-NH3 photochemistry at 147 nm has been developed and results are directly compared with experimental simulations carried out for the same mixtures. Simulations with varying quantities of ammonia and hydrogen show how amines and nitriles can be produce in planetary atmospheres. These comparisons allow one to test schemes of reactions used in photochemical models. In particular, it is shown that the scheme of reactions of CH4 is fairly well consistent with experimental data. On the other hand, the photochemistry of NH3 should be improved. 相似文献
10.
P. Cerroni G. Martelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):97-102
It is suggested that the UV radiation, and shock and plasma phenomena which accompanied the hypervelocity impacts of solid bodies (meteorites and comets) onto the surface of the young Earth may have contributed to the synthesis of prebiotic organic molecules in the primitive atmosphere in a larger amount than was thought previously. The mechanisms responsible for this synthesis are discussed using information obtained from recent experimental and theoretical work on macroscopic hypervelocity impacts. 相似文献
11.
P Sonnentrucker B H Foing P Ehrenfreund 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):449-452
The Diffuse Interstellar Bands (DIBs) are absorption lines observed in the line of sight toward reddened OB stars. Their ubiquitous detection in space indicates chemically stable and abundant carriers. High resolution spectroscopy led to the detection of substructures in the line profiles of a few DIBs, indicating a gas phase molecular origin of the carriers. Line profile studies are useful tools to derive information on the band carriers nature. In this paper we compared the velocity structure of the lambda 6613 angstroms DIB line profile to the NaD1 and CaII profiles toward 6 targets of the Perseus OB2 association. 相似文献
12.
E M Drobyshevski V A Chesnakov V V Sinitsyn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):73-84
Many moonlike bodies (M approximately or = 1 Moon) beyond the Martian orbit contain large amounts of dirty ice (approximately 50%) forming thick mantle with the solid phase thermal convection. When a body moves through the inter- or nearplanetary magnetized plasma, electric current is generated in the body and its environment. The current passing through a dirty ice containing up to 10% of organic admixtures produces a lot of electrochemical effects which have a profound impact on its composition. At this stage one can hardly say something definite concerning changes experienced by organics. The changes must occur inevitably and can be of a rather unexpected and far-reaching nature, so deserving a close study. Another obvious effect is a volumetric electrolysis of ice containing alien inclusions. The electrolysis products accumulate in ice in the form of a solid solution which is capable of detonation at 15-20 wt.% of 2H2 + O2. If M > or = 1 Moon (Galilean satellites, Titan), the body loses in explosion a part of its mass in the form of vapor and ice fragments (=short-period comet nuclei), whereas if M < or = 0.2 Moon, the body breaks up totally (the Main Belt asteroids origin approximately 3.9 Byr ago). 2H2 + O2 containing cometary nuclei are capable of burning or suffer new explosions when receiving an additional energy. The combustion in the sublimation products containing also light organics and 2H2 + O2 explains unexpected energetics and nearnuclear chemistry of Comet P/Halley (e.g. great abundances of negative and positive ions, atomic carbon, CO over CO2, origin of CHON particles etc) and its distant outbursts correlated, possibly, with the Solar activity. Thus the electrochemical processes in the dirty ice with organics, along with its subsequent thermal, radiative etc. processing, open up new potentials for explanation and prediction of quite unexpected discoveries. 相似文献
13.
A Bhardwaj S A Haider R P Singhal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):31-36
Various experimental data acquired during the visit of Halley's comet in 1986 have shown that the amount of carbon produced due to photodissociation of parent carbon bearing species is not ample enough to explain the observations. This requires the presence of an additional source of atomic carbon. One of the possible source could be auroral-type activities resulting from the precipitation of high-energy "auroral electrons" of solar wind origin, the evidence of which have been inferred from many observations at comet Halley. We have developed a coupled chemistry-transport model to study the role of auroral and photoelectron impact as well as of chemistry on the modelling of carbon in the inner coma (< or = 10(4) km) of comet Halley. Our study suggest that electron impact dissociation of CO is the major source of carbon production in the inner coma, not the recombination of CO+ as suggested by earlier workers, while transport is the main loss process. 相似文献
14.
F Raulin J M Greenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):975-978
High molecular weight organic compounds are involved in the chemistry and physics of many astrophysical and planetary objects. They are or should be present in interstellar dust, in comets and meteorites, in the Giant planets and Titan, in asteroids Triton and icy satellites. They represent a class of very complex organic material, part of which may have played a role in the origin of life on Earth. Thus they directly concern prebiotic chemistry and exobiology. 相似文献
15.
J Kissel F R Krueger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):59-63
When the VEGA and GIOTTO spacecrafts flew by comet p/Halley in 1986 the mass-spectrometers Puma and PIA measured the composition of cometary dust particles impacting at speeds of well above 65 km/s. Ion formation upon impact lead to mostly atomic ions. However, a small fraction of the ions measured could be related to molecules. A sophisticated analysis allowed for the first time to point to the chemical nature of cometary organics based on actual mass spectra. With the instrument CoMA for the NASA-BMFT mission CRAF much higher mass-resolution and molecule masses become accessible for in situ measurement, and will yield complementary information to the gas chromatograph CIDEX also onboard CRAF. 相似文献
16.
K Kobayashi T Kaneko T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):461-464
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase. 相似文献
17.
W. Bernstein P.J. Kellogg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(2):347-360
Experiments, which somewhat simulate the injection of monoenergetic (several keV) electron beams into the ionosphere, have been performed in the very large (17 m × 26 m) vacuum chamber at Johnson Space Center. Typical operating ranges were: Beam current, I (0–130 mA), beam energy, E (0.5–3 kV), magnetic field, (0.3–2 G), path length, L (10–20 m), and injection pitch angle, α(0–80°). Measurements were carried out in both steady state and pulsed modes. In steady state and for constant V, B, p, L, α, the beam plasma discharge (BPD) is abruptly ignited when the beam current is increased above a critical value; at currents below critical, the beam configuration appears grossly consistent with single particle behavior. If it is assumed that each of the experiment parameters can be varied independently, the critical current required for ignition obeys the empirical relationship at p < 2 × 10?5 torr: The BPD is characterized by 1) a large increase in the plasma production rate manifested in corresponding increases in the 3914 Å light intensity and plasma density, 2) intense wave emissions in a broad band centered at the plasma frequency and a second band extending from a few kHz up to the electron cyclotron frequency, 3) scattering of the beam in velocity space and 4) radial expansion and pitch angle scattering of the primary beam leading to the disappearance of single particle trajectory features.Measurements of the BPD critical current have been carried out with an ion thruster (Kaufman engine) to provide a background plasma, and these indicate that the presence of an ambient plasma of typical ionospheric densities has little effect on the critical current relation.Measurements of wave amplitudes over a large frequency range show that the amplitude of waves near the plasma and electron cyclotron frequencies are too small to cause or sustain BPD, and that the important instabilities are at much lower frequency (~ 3 kHz in these measurements). 相似文献
18.
B N Khare W R Thompson C F Chyba E T Arakawa C Sagan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(2):41-53
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons. 相似文献
19.
Amino acid synthesis from CO-N2 and CO-N2-H2 gas mixtures via complex organic compounds. 总被引:1,自引:0,他引:1
S Miyakawa K Kobayashi A B Sawaoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):465-468
Reaction among hydrogen cyanide (HCN), formaldehyde (H2CO) and ammonia (NH3) are generally considered an important reaction in amino acid synthesis by electric discharge. Precursors of glycine and aspartic acid were, however, synthesized by adding water to metastable complex compounds produced by quenching a CO-N2 high-temperature plasma. In order to investigate effects of water remaining in an experimental vacuum chamber, optical emission spectroscopic and mass spectrometric measurements were conducted with CO-N2 and CO-N2-H2 gas mixtures. Although residual hydrogen atoms were detected in the CO-N2 experiment, the amount of them was much less than that in the CO-N2-H2 experiment. 相似文献
20.
P Coll D Cosia M C Gazeau F Raulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1113-1119
The atmosphere of Titan partly consists of hazes and aerosol particles. Experimental simulation is one of the powerful approaches to study the processes which yield these particles, and their chemical composition. It provides laboratory analogues, sometimes called tholins. Development and optimization of experimental tools were undertaken in order to perform chemical and physical analyses of analogues under conditions free from contamination. A "Titan aerosol generator" was developed in the frame of the Cassini-Huygens mission, in order to produce Titan's aerosol analogues within conditions closer to those of the titanian atmosphere: cold plasma simulation system, low pressure and low temperature. The direct current (DC) glow discharge is produced by applying a DC voltage between two conductive electrodes inserted into the gas mixture-model of the studied atmosphere- at low pressure. A high-impedance power supply is used to provide the electrical field. All the system is installed in a glove box, which protect samples from any contamination. Finally the research program expected with this new material is presented. 相似文献