首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过国产T1000级碳纤维表面状态、单向板、NOL环及185 mm壳体的实验研究,分析了两种国产T1000级碳纤维的表面物理和化学状态,复合材料的微观界面性能及力学性能。结果表明,两种国产T1000级碳纤维表面光滑,断口基本呈现为规整的圆形,国产T1000级碳纤维能获得较高的拉伸强度。两种国产T1000级碳纤维单向板0°拉伸强度均略低于进口T1000碳纤维,这是由于HF50S碳纤维单向板呈现部分纤维束型的破坏和部分断裂型的破坏;两种国产T1000级碳纤维单向板90°拉伸强度均略低于进口T1000碳纤维,这是由于国产T1000级碳纤维与树脂基体之间的机械锚钉作用较弱,界面粘接强度较低;两种国产T1000级碳纤维缠绕壳体爆破压强是进口T1000壳体爆破压强的0.93和0.88,这是由于SYT55碳纤维和HF50S碳纤维缠绕时容易起毛和界面粘接性能较差。  相似文献   

2.
采用T800碳纤维/聚醚醚酮(T800/PEEK)预浸料,以高温、模压方式制备了热塑性单向复合材料,通过拉伸、面内剪切试验方法对其模量和强度进行了测试分析,得到了不同载荷形式作用下的宏观失效破坏模式。针对T800/PEEK复合材料的微细观结构特点,建立了有限元代表性体积单元模型(RVE)和碳纤维、PEEK基体以及纤维/基体界面三种材料的本构关系,基于渐进损伤失效模型和内聚力模型得到了单轴拉伸/压缩、面内剪切载荷作用下单元模型的应力应变曲线和微细观失效模式。相比于试验测试结果,有限元模型预测得到的拉伸模量/强度相差最大为11%,剪切模量/强度相差最大为5%。  相似文献   

3.
分别采用HTA-P30碳纤维、T800碳纤维与PBO纤维进行了层间混杂,研究了不同的混杂比、不同性能的碳纤维以及不同的粘接界面对PBO/碳纤维复合材料的拉伸性能和层间剪切性能的影响。试验结果表明,T800与PBO纤维混杂后,复合材料的强度表现出混杂负效应,而模量和层间剪切强度表现出混杂正效应,且均随混杂比的增大而降低。PBO纤维经过表面处理后,提高了混杂复合材料的弱界面层粘结性能,从而强度、模量、层间剪切强度的混杂效应系数均有不同程度的增大,尤其是层间剪切强度的混杂效应系数提高程度很大,并且与纤维的表面状态密切相关。随着PBO纤维的混入,可降低复合材料性能的分散性(离散系数),提高质量可靠性。  相似文献   

4.
纤维缠绕工艺是影响固体火箭发动机复合材料壳体强度的重要因素,缠绕工艺参数对不同复合材料制备的壳体强度影响不同。基于网格理论,使用LS_DYNA进行不同缠绕工艺参数下的壳体强度仿真,开展水压爆破实验,从而研究不同缠绕工艺参数对国产T800碳纤维复合材料缠绕壳体及东丽T800碳纤维复合材料壳体强度的影响,并进行对比分析。结果表明,对于国产T800碳纤维缠绕壳体和东丽T800碳纤维缠绕壳体,[90,±29,90]类型的铺层顺序下壳体破坏区域所受的应力较[±29,90,90]类型的铺层顺序更小;8 mm纱带宽度可以减少纱带间的搭接,提高壳体成型强度。[90,±29,90]的铺层顺序和8 mm的纱带宽度对于国产T800碳纤维复合材料壳体强度发挥更为有利,同时验证了国产T800碳纤维缠绕壳体强度能够满足设计要求。所得纤维缠绕工艺关键参数及结论,可为国产T800碳纤维壳体的设计应用提供借鉴。  相似文献   

5.
为了提高连续碳纤维增强镁基(Cf/Mg)复合材料的强度,采用压力浸渗法制备了T300/AZ91D和T700/AZ91D两种复合材料,通过改变预热温度和浇铸温度,对采用压力浸渗法制备连续Cf/Mg复合材料的组织与力学性能进行了研究。研究结果表明:预热温度太高会损坏碳纤维,影响碳纤维与基体的结合;浇铸温度太低会使熔体在碳纤维未浸渗完全时便已开始凝固;浇铸温度太高会损坏碳纤维,降低复合材料的力学性能;当预热温度为450 ℃、浇铸温度为800 ℃时,制备的T300/AZ91D复合材料弯曲强度最高,为865 MPa;当预热温度为450 ℃、浇铸温度为750 ℃时,制备的T700/AZ91D复合材料弯曲强度最高,为1 153 MPa。通过研究,提高了碳纤维增强镁基复合材料的力学性能,使该材料能更广泛地应用于航空航天领域。  相似文献   

6.
采用X射线衍射(X-ray diffraction,XRD)和拉曼光谱(Raman光谱)研究了3种自制PAN基高模量碳纤维(1#,2#,3#)的微观结构,并与M40J,M46J,M55J碳纤维进行了对比。结果表明:3种自制PAN基高模量碳纤维微晶尺寸的大小顺序为3#2#1#;1#到3#碳纤维表面和截面Raman光谱所获得的R值(D峰和G峰的积分强度比)均减小,石墨化程度升高,结晶性变好;1#碳纤维的结晶性介于M40J碳纤维和M46J碳纤维之间,2#和3#介于M46J碳纤维和M55J碳纤维之间;三者的石墨化程度略高于M46J碳纤维。  相似文献   

7.
T300和国产碳纤维本体的力学性能对比及其分析   总被引:2,自引:0,他引:2  
郭慧  黄玉东  刘丽  王磊 《宇航学报》2009,30(5):2068-2072
由于T300与国产碳纤维的性能有很大差异,其中包括纤维本体的差异和涂层的差异。主要研究了两种纤维本体强度的差异。通过对两种纤维本体单丝拉伸强度的测试和Weibull统计方法分析可知,国产碳纤维要比T300的单丝拉伸强度大,稳定性较好。X射线衍射(XRD)分析表明T300纤维微晶尺寸较小并且石墨化程度比国产碳纤维差。元素分析显示,T300中N元素含量超过国产碳纤维。结果表明,微晶尺寸和纤维中N元素含量是影响碳纤维强度的重要因素。
  相似文献   

8.
航天器表面瞬态测温用薄膜热电偶的研制   总被引:1,自引:0,他引:1  
根据航天器表面测温的需要,研制了一种K型(NiCr-NiSi)薄膜热电偶。该型热电偶采用射频磁控溅射技术在针型高温陶瓷基体上制备薄膜热电偶,其热电偶结点厚度为微米级,能够与航天器表面有效贴合,实现航天器表面的瞬态高温测量。通过物理试验验证,该型薄膜热电偶测量最高温度能够达到800℃,测量相对误差在±0.5%以内,满足返回式航天器表面高温的瞬态测温需求。  相似文献   

9.
为拓展碳纤维在绝热材料领域的应用,将实验室自制原丝通过低温炭化工艺制备得到了低导热聚丙烯腈(PAN)基碳纤维,分析了该碳纤维的化学组成、微观结构、表面形貌、热性能和力学性能等;并制备了低导热碳纤维增强酚醛树脂橡胶基绝热材料,探讨其热性能和烧蚀性能的变化规律和影响因素。结果表明,采用低温炭化,碳纤维的碳元素含量和结晶度相对较低,导致其热性能和力学性能较差,其中热导率最大可比MT300碳纤维降低46.9%,但有利于绝热材料的制备。炭化温度为900℃时,碳纤维绝热材料的热导率比MT300碳纤维绝热材料降低23.4%,线烧蚀率提高39.5%。该材料的制备工艺及关键性能参数可为国产碳纤维在固体火箭发动机内热防护领域的应用提供借鉴和参考。  相似文献   

10.
针对高模量、高热导率中间相沥青基碳纤维复合材料界面性能弱等瓶颈问题,深入研究该类纤维表面特性及其与树脂的界面粘结性能。选取3种典型中间相沥青基碳纤维,测试分析其微观形貌、表面能和极性与色散分量、表面元素种类与含量,利用微脱黏方法表征中间相沥青基碳纤维与环氧树脂的界面剪切强度。研究结果表明:中间相沥青基碳纤维表面均存在明显沟槽结构,但其呈化学惰性,选用的中间相沥青基碳纤维与环氧树脂界面剪切强度最高约为50 MPa,明显低于聚丙烯腈基碳纤维;纤维表面能越高,尤其是极性分量越高,中间相沥青基碳纤维/环氧树脂界面剪切强度越大,这些结果揭示了中间相沥青基碳纤维与树脂基体界面性能主控因素。  相似文献   

11.
本文主要研究了碳纤维织物增强复合材料的纤维体积含量V_f对开孔层压板的抗拉强度σ、断裂伸长率ε的影响。采用T300碳纤维平纹织物为增强材料,经树脂传递模塑法(RTM工艺)复合而成T300/环氧TDE-85层压板,用岛津强力测试机进行拉伸性能测试。  相似文献   

12.
风云一号天线反射板采用碳纤维/铝蜂窝夹层结构表面粘贴铝箔的结构形式。由于铝箔、碳纤维的热膨胀系数相差悬殊 ,因此具有很大的工艺难度。进行了大量的工艺实验后 ,在工艺特点分析和工艺实验的基础上 ,采用了合理的工艺路线 ,确定用中温胶双面贴铝箔作为天线反射板的铝箔粘贴工艺 ,解决了碳纤维/铝峰窝夹层结构表面粘贴铝箔胶接层中不能有气泡存在的工艺难点 ,满足了卫星轨道条件下不鼓泡、不脱落的使用要求 ,并保证了天线反射板平面度、孔位精度高的要求  相似文献   

13.
针对高分辨率遥感卫星关键载荷复合材料支撑结构热变形光纤在轨监测需求,研究层状复合材料结构热应变光纤光栅传感特性。首先,采用有限元方法分析得出层状复合材料结构在局部热载荷作用下热应变场分布特征;然后,制作层状复合材料结构试件,建立光纤光栅热应变监测实验系统;最后,以同样尺寸的铝合金结构为对比试件,实验分析T700级碳纤维增强复合材料层压板的热应变传感特性。实验数据表明,在30~100℃范围内,碳纤维复合材料结构热应变随温度升高而近似线性增大,但其热应变量明显小于同一温度下铝合金结构热应变;碳纤维复合材料的热应变场呈各向异性分布特征,100℃时其轴向和径向应变的光纤光栅测量值分别为155.8με、181.3με,与仿真计算结果的平均相对误差为1.58%、1.52%。利用光纤光栅传感器能够有效测量碳纤维复合材料结构的热应变,研究结果可为高分辨率遥感卫星层状复合材料结构光纤在轨监测提供参考。  相似文献   

14.
碳纤维表面改性研究进展   总被引:16,自引:0,他引:16  
文章阐述了碳纤维增强树脂基复合材料中界面的粘接机理 ,介绍了碳纤维的表面结构与性能 ,重点综述了常用的碳纤维表面处理方法。  相似文献   

15.
风云一号天线反射板采用碳纤维/铝蜂窝夹层结构表面粘贴铝箔的结构形式,由于铝箔,碳纤维的热膨胀系数相差悬殊,因此具有很大的工艺难度。进行了大量的工艺实验后,在工艺特点分析和工艺实验的基础上,采用了合理的工艺路线,确定用中温胶双面贴铝箔作为天线反射板的铝箔粘贴工艺,解决了碳纤维/铝峰窝夹层结构表面粘贴铝箔胶接层中不能有气泡存在的工艺难点,满足了卫星轨道条件下不鼓泡,不脱落的使用要求,并保证了天然反射板平面度,孔位精度高的要求。  相似文献   

16.
文章阐述了碳纤维增强树脂基复合材料中界面的粘接机理,介绍了碳纤维的表面结构与性能,重点综述了常用的碳纤维表面处理方法。  相似文献   

17.
日本的H-I是一种发射550kg级卫星的三级运载火箭,它对末级发动机(包括第三级发动机和远地点发动机)的性能及可靠性要求相当严格。为了提高发动机的性能和减轻质量,在研制过程中,发动机壳体、喷管喉衬及绝热层等部件都采用了最新材料。1.2维C/C材料2维C/C材料与过去使用的碳纤维增强材料(CFRP)相比,具有耐热、高温下拉伸强度高等特点。  相似文献   

18.
界面是处于连接增强纤维和基体之间的极其重要的微观结构,良好的界面结合能有效地传递载荷,从而提高材料的力学性能,由于碳纤维表面呈惰性,比表面积小,表面能低等缺点导致材料界面层结合强度低,因此有必要通过某种途径改善其上述缺陷.目前,改善碳纤维表面缺陷的方法是对碳纤维表面进行表面改性处理,从而提高其界面力学性能.在界面的研究中,提高其碳纤维与基体的结合强度是改善复合材料力学性能的关键.因此,对碳纤维复合材料界面结合强度的各种影响因素进行分析,综述了碳纤维增强树脂基复合材料界面构筑方法及其对复合材料力学性能的影响.  相似文献   

19.
本文讨论了容错计算机的三种容错结构,即D/S(双机变单机)、TMR/J(三模冗余变单机)、以及TMR/D/S(三模冗余变双机再变单机)结构。给出了三种容错结构的可靠性数学模型,对影响可靠性的诸多因素进行了讨论、比较,确定采用TMR/S方案。文中对TMR/S的硬件设置及容错管理程序做了简要介绍。对从事容错设计的工程技术人员有一定参考价值。  相似文献   

20.
为了研究碳纤维增强聚四氟乙烯材料的最佳加工工艺,采用扫描电镜对碳纤维增强聚四氟乙烯材料的微观结构形貌进行了观察,并对碳纤维增强聚四氟乙烯材料的结晶形态和成型后毛坯的内部微观缺陷进行了对比研究和分析。研究表明:碳纤维增强聚四氟乙烯毛坯表面存在"球状结晶",无缺陷的毛坯内部不会产生"球状结晶";碳纤维增强聚四氟乙烯毛坯内部的气孔、分层缺陷在冷压过程中形成。减少碳纤维增强聚四氟乙烯粉料的团聚,能有效减少成型后毛坯内部气孔缺陷的产生;碳纤维增强聚四氟乙烯材料冷压时适当降低压制压力,能有效减少分层缺陷的产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号