首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
偶氮四唑三氨基胍盐(TAGZT)是一种有望在固体推进剂和气体发生剂中应用的新型高氮含能化合物。通过热重(TG)、差示扫描量热(DSC)和气体(固体)原位反应池/快速扫描傅里叶变换红外光谱(RSFTIR)联用技术,研究了TAG-ZT的热分解。实验结果显示TAGZT的热稳定性达200℃,热分解过程对压强不敏感,465℃热分解凝聚相产物为炭黑、NH4N3和嘧嘞胺。计算获得了TAGZT的热分解动力学参数和方程,分析提出了TAGZT的热分解机理。  相似文献   

2.
燃速催化剂LBC对GAP推进剂主要组分热分解行为的影响   总被引:1,自引:0,他引:1  
通过线性升温条件下的热重(TG)分析和差示扫描量热法(DSC),分别研究了铅盐燃速催化剂LBC对AP、HMX和GAP粘合剂体系等GAP推进剂主要组分热分解行为的影响,测定和比较了它们的热分解特征量和质量损失.证实LBC促进了AP高温分解温度的降低及其低温段的放热量增加,并使其低温段的热分解速率加快,对AP的热分解行为产...  相似文献   

3.
FOX-7的热分解机理   总被引:1,自引:0,他引:1  
采用热原位红外、热裂解色谱-质谱、热重分析(TG)、差示扫描量热法(DSC)研究了FOX-7的热分解过程,通过测定程序升温过程中凝聚相的化学结构变化和生成的气相产物,研究了FOX-7的热分解机理。研究结果表明,FOX-7在转晶后可能发生了缩合反应,使其处于缩合产物的平衡状态,随着温度的升高该平衡被打破,FOX-7开始分解成一些小官能团产物和小分子产物;气相产物中首先检测到NO,说明热分解的"脱硝"过程存在硝基与亚硝基互变反应过程。  相似文献   

4.
利用差示扫描量热(DSC)、热重(TG)和慢速烤燃试验,对比HTPB推进剂热分解和慢速烤燃结果,分析了HTPE推进剂的热分解特性与慢速烤燃行为的关系。结果表明,HTPE推进剂比HTPB推进剂更容易发生热分解反应,且慢烤响应时间比HTPB推进剂提前40 min,响应温度降低44℃;缓和剂BABE能使推进剂在低于AP发生分解反应(169℃)前发生分解反应,避免了AP热分解形成的气孔的影响,可大幅度减缓推进剂慢烤的响应程度。HTPE推进剂能通过慢速烤燃响应结果为燃烧,通过慢烤试验。  相似文献   

5.
用热重(TG)及微商热重(DTG)研究了不同配比PU/P(MMA-EA)互穿体系在氮气气氛、不同升温速率的热分解反应过程。根据PU/P(MMA-EA)热解DTG曲线特点,将其热解过程分为两个阶段,用Kissinger法计算三种试样两个阶段的动力学参数,PU/P(MMA-EA)配比100/0,90/10,70/30在第一阶段活化能分别为114,102,88kJ/mol,在第二阶段活化能分别为153,223,218kJ/mol。用Ozawa法求得各阶段的平均活化能与Kissinger法计算结果一致。用积分法结合34种动力学函数判断该体系热分解的机理函数,并给出了结果。  相似文献   

6.
利用3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)和1,4-丁二胺,在DMSO中合成出了标题化合物。采用元素分析和红外光谱分析,测定了其结构。用DSC和TG/DTG热分析仪,对标题化合物进行了热分解行为及热分解动力学研究。结果表明,化合物的热分解过程只有一个放热阶段,该阶段的非等温热分解反应动力学方程的活化能和指前因子分别为92.95 kJ/mol和1016.58s-1。采用MicroDSCⅢ量热仪中的连续比定压热容测定模式,测定了化合物的比定压热容,比定压热容随温度呈现二次方关系,且298.15 K下的标准摩尔热容为443.22 J/(mol.K)。计算得到化合物的自加速分解温度(TSADT)、热爆炸临界温度(Tb)和绝热至爆时间分别为521.55、536.73 K和36.97 s。  相似文献   

7.
TG-DSC-IR-MS联用研究RDX-CMDB推进剂催化热分解   总被引:1,自引:0,他引:1  
采用热重-差示扫描量热-红外-质谱(TG-DSC-IR-MS)联用技术,研究了三元复合燃速催化剂(2,4二羟基苯甲酸铅、对氨基苯甲酸铜和炭黑)对RDX-CMDB推进剂热分解的作用,并比较了纳米和普通催化剂作用效果的差异.结果表明,该复合燃速催化剂使RDX-CMDB推进剂热分解特征量发生明显变化;改变了推进剂中RDX的初期热分解机理,使放热的CN 键断裂在与吸热的NNO2 键断裂的竞争反应中占优;也使双基组分放出有负生成热的CH2O的相对量增加,分解过程放热量或放热速度提高,促进了燃速的提高.与普通催化剂相比,纳米催化剂作用效果更好.  相似文献   

8.
利用热量(TG)及微商热重(DTG),研究了GAP基含能热塑性弹性体(GAP-TPE)在氢气气氛、不同升温速率的热分解反应过程.根据GAP-TPE热解DTG曲线特点,把GAP-TPE热解过程分为3个阶段,用Kissinger法计算3个阶段的动力学参数,其活化能分别是223、235、57kJ/mol,lnA分别是52.7...  相似文献   

9.
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程.研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217 ℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7 ℃之间出现的主要放热峰,主放热峰之后300 ℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应.采用3种不同计算方法所得的DNP分解活化能为103~124 kJ*mol-1;最后经过分析计算得到了DNP热分解机理函数.  相似文献   

10.
N,N'-二硝基哌嗪的热分解机理及动力学研究   总被引:1,自引:0,他引:1  
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程。研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7℃之间出现的主要放热峰,主放热峰之后300℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应。采用3种不同计算方法所得的DNP分解活化能为103~124 kJ.mol-1;最后经过分析计算得到了DNP热分解机理函数。  相似文献   

11.
采用热重-差示扫描量热法(TG-DSC)和气相色谱-质谱法(GC-MS),分别研究过氧化二异丙苯(DCP)的热分解特性和热分解产物,采用热重-红外光谱(TG-FTIR),测定程序升温过程中生成的气相产物,采用热解-同步辐射研究热解过程中的中间产物,并通过密度泛函理论DFT-B3LYP/6-311G(d,p)计算,研究探讨DCP的热分解性能及其机理。研究结果表明,常压下DCP受热均裂产生异丙苯氧自由基,进而通过自由基间分解或相互结合产生α-甲基苯乙酮、α,α-二甲基苄醇、甲烷、乙烷等主要产物以及三甲基苯甲醇、甲基苯乙酮等微量产物。  相似文献   

12.
GNTO的热分解动力学和比热容及绝热至爆时间研究   总被引:4,自引:0,他引:4  
利用3-硝基-1,2,4-三唑-5-酮的钠盐(NaNTO·H2O)和盐酸胍在水溶液中合成了一种新型含能材料NTO胍盐(GNTO).采用DSC和TG/DTG法对GNTO进行了热行为及非等温热分解动力学研究,其热分解反应的动力学方程为(dα)/(dT)=(1023.71)/(β)6(1-α)(2)/(3)[1-(1-α)(1)/(3)](1)/(2)exp(-2.602×105/RT),临界爆炸温度为256.29 ℃.同时,利用微量热法对GNTO的比热容进行了测定,298.15 K时GNTO的标准摩尔比热容为236.88 J/(mol·K);计算得到了GNTO的绝热爆炸时间为102.16 s.  相似文献   

13.
TATB、DATB热分解动力学和机理研究   总被引:1,自引:0,他引:1  
采用DSC、PDSC、TG、TG-FTIR联用技术和热裂解原位快速扫描-FTIR联用技术,研究TATB和DATB热分解全过程,获得了TATB和DATB的热分解反应动力学参数,并提出TATB和DATB的热分解机理。研究结果表明,TATB和DATB热分解的初始过程存在苯并呋咱或苯并氧化呋咱中间产物。  相似文献   

14.
含CL-20 的NEPE推进剂热分解   总被引:1,自引:0,他引:1  
借助热重-微商热重(TG-DTG)试验和差示扫描量热(DSC)试验研究了含CL-20的NEPE推进剂的热分解特性,探索了主要组分NG、CL-20、AP和催化剂之间的相互作用。实验结果表明,该推进剂的热分解过程分3个阶段:增塑剂(NG)的挥发和分解,PEG CL-20的分解,AP的分解。CL-20促进了NG和PEG的分解,NG与PEG并未影响CL-20的分解。AP的加入促进了CL-20的分解,同时CL-20也使AP的分解由单质2步分解合并为1步。Al粉在该体系中与其他组分的相互作用较弱。催化剂Ct1和Ct2在一定程度上抑制了推进剂中NG、CL-20和AP的起始分解,对于NG起始分解的抑制作用更为明显,当温度升高,抑制作用消失即分解开始时,分解速率大幅提高,从而使推进剂热分解的放热历程缩短,致使推进剂燃速提高。  相似文献   

15.
六硝基六氮杂异伍兹烷(CL-20)在3,4-二硝基呋咱基氧化呋咱(DNTF)基熔铸炸药中应用前景广阔,从实验分析和动力学模拟两方面入手,研究了DNTF/CL-20双组元体系(1∶1,质量比)热分解特性及机理。采用高压差示扫描量热(PDSC)技术考察了双组元体系的热分解特性,并通过Kissinger方程得到了其热分解动力学参数;采用同步热分析-红外-质谱(TG/DSC-FTIR-MS)联用技术研究了双组元体系热分解产物的组成及种类,推测了其热分解机理;采用耐驰热动力学软件获得了1.0 MPa下双组元体系的热分解动力学参数。结果表明:DNTF/CL-20双组元体系在1.0 MPa下的热分解过程中,CL-20会因低共熔导致分解峰温降低,产生的气相产物会促进DNTF的分解,进而引起其峰温前移;DNTF/CL-20双组元体系热分解的初始步骤为CL-20中的N—NO2断裂,产生具有催化作用的气相分子,致使其笼状结构裂解,并引起DNTF的呋咱环和氧化呋咱环于N—O键处断裂,最终生成后续生成NO、CO、CO2、N2O、H2  相似文献   

16.
利用热重-微分热重分析技术研究了自制的双酚芴乙二胺苯并噁嗪树脂在氮气气氛中的热分解动力学,通过Kissinger法和Ozawa法对该树脂进行动力学分析,求出相关动力学参数。利用模型拟合法推测双酚芴乙二胺苯并噁嗪树脂的热分解机理,并用非模型拟合法进行验证。结果表明,双酚芴乙二胺苯并噁嗪树脂的热分解平均活化能及指前因子分别为E=260.55 k J/mol;lg A=16.98 s-1。双酚芴乙二胺树脂热分解过程符合随机成核和随后生长机理,其分解反应微分函数为f(α)=n(1-α)×[-ln(1-α)]1-1n;积分函数为g(α)=[-ln(1-α)]1n,其中n=1/5,对应的热分解反应方程为dαd T=9.55×1016()βexp-260.55×103RT×15(1-α)×[-ln(1-α)]-4。  相似文献   

17.
利用热重-微分热重技术研究了二炔丙基双酚A醚聚合物(PDPEBA)在氮气气氛中的非等温热分解过程,探讨了聚合物在不同升温速率下的热分解机理,并采用2种模型法和5种非模型法对二炔丙基双酚A醚聚合物热分解动力学三因子(E、A、f(a))进行计算。结果表明,7种方法计算所得平均活化能及指前因子分别为E=176.30 k J/mol,lg A=10.43s-1;聚合物热分解阶段符合三维扩散机理,其对应的机理微分函数为f(α)=32(1-α)43×(1-α)-1[-3/1]-1,积分函数为g(α)=(1-α)-1[-3/1]2。  相似文献   

18.
为通过改变硫化体系对三元乙丙(EPDM)橡胶性能进行改善,研究了三烯丙基异氰脲酸酯(TAIC)、N,N'?间苯撑双马来酞亚胺(PDM)和硫磺(S)助交联剂分别在过氧化物双(叔丁基过氯基)三甲基环乙烷(TMCH)体系和过氯化二异丙苯(DCP)体系下对EPDM橡胶的影响,考察了试样胶片的交联密度、力学拉伸性能和硫化特性曲线...  相似文献   

19.
为了解不同粒度和不同形态下CuO的催化能力,采用热重/差热联用(TG/DTA),水下声发射实验方法,研究了普通球形CuO、球形纳米级CuO、棒状纳米级CuO对A3、PBT、HMX、AP等含能材料的热分解影响,并测试了不同种类CuO对固体复合推进剂燃烧速率的影响。结果表明,CuO类催化剂均能催化A3、PBT、HMX、AP等含能材料的热分解,但催化效果和CuO的形态关系密切,和粒度关系不大;棒状纳米CuO可有效地提高推进剂的燃速;而球形纳米CuO只在低压条件下可提高推进剂的燃速,高压下反而抑制了推进剂的燃速。  相似文献   

20.
二硝酰胺铵(ADN)因具有氧平衡和能量高、且不含卤素的特点,被认为是新型固体推进剂中最有应用前景的高能氧化剂之一。重点研究了纳米Fe_2O_3(nano-Fe_2O_3)对ADN热分解行为的影响。利用差示扫描量热法(DSC)和热重(TGDTA)分析法,研究了nano-Fe_2O_3/ADN混合物的热行为,采用Friedman法计算了其活化能;利用TG-DTA-MS和TG-DTS-IR联用仪,进一步研究了纯ADN和nano-Fe_2O_3/ADN混合物在相同测试条件下的气体分解产物组成及热分解机理。结果表明,nano-Fe_2O_3降低了ADN的起始分解温度和最大分解温度,促进了ADN的热分解,反应后残留物的质量与最初添加到混合物中的nano-Fe_2O_3的质量接近,表明nano-Fe_2O_3可以催化ADN的热失重和放热行为,且nano-Fe_2O_3并没有改变ADN的反应过程,分解产物不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号