首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

2.
Relativistic electrons (with energies >150 keV) which originate in the outer radiation belt and detected by the Russian ‘Meteor’ series of satellites have been correlated with the atmospheric total ozone data compiled by almost 90 stations located around the world within the latitude zone 40°–70°N. In more than 60% of the stations examined we have detected a clear decrease of the ozone 3–5 days after the electron flux excess. A numerical model has been applied to approximate this effect based on relativistic electron initiated nitric oxides creation in the upper mesosphere with subsequent atmospheric transport (both vertical and horizontal) towards the upper stratosphere. A first attempt of local and temporal prediction of ozone depletion because of energetic electrons impact in the middle atmosphere has been illustrated.  相似文献   

3.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

4.
Vertical profiles of stratospheric nitrogen dioxide (NO2) have been retrieved from moderate resolution lunar occultation transmission spectra measured by Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board the European Environmental Satellite (ENVISAT). These measurements were taken over the high southern latitude of 50°–90° during the period of 2003–2005. To assess the accuracy of the retrieved NO2 profiles, the SCIAMACHY nighttime NO2 profiles were compared with NO2 profiles retrieved from sunrise solar occultation spectra measured by the Halogen Occultation Experiment (HALOE) and the Stratospheric Aerosol and Gas Experiments II (SAGE II) using a photochemical correction model. The validation results show good agreement of SCIAMACHY lunar occultation NO2 with scaled HALOE and SAGE II profiles. The relative mean differences (rmd) with scaled HALOE profiles are within −13% to +5% and standard deviations (rms) of the relative differences are within 3–19% between 25 and 38 km. The rmd and rms with scaled SAGE II NO2 profiles are in the range of −9 to +7 and 10–17% respectively between 22 and 39 km.  相似文献   

5.
本文对CIRA 1972 模式下的中、低层大气密度季变化所造成的电离率的季变化作了理论计算, 利用宇宙线电离源函数对全球中、低层大气的电离率作了数值计算.计算结果表明, 在70km以下的大气电离率的季变化幅度为百分之几十.在电离峰值高度(约15km)以下幅度为约百分之十, 高度越高变幅越大, 到70km处达35%.在20km以上电离率的季变化趋势与大气密度的季变化趋势大致相同, 夏季比冬季大, 20km以下变化稍为复杂.   相似文献   

6.
The structure and variability of tides in the 80 – 120 km height region are reviewed. Particularly emphasised are seasonal-latitudinal variations in the vertical structure of diurnal and semidiurnal winds between 70 – 100 km as measured by meteor and partial reflection drift radars, and tidal temperatures determined by incoherent scatter radars between 100 and 140 km. Variations in tidal structures with longitude, from day to day, and during equinoctial transition periods are also addressed.  相似文献   

7.
The general characteristics of middle atmospheric thermal structure have been studied by making use of the Rayleigh lidar data collected over the period of about four years (1998–2001). Here, the data has been used from two different stations in the Indian sub-continent in tropics (Gadanki; 13.5°N, 79.2°E) and in sub-tropics (Mt. Abu; 24.5°N, 72.7°E). The observed monthly mean temperature profiles are compared with different model atmospheres (CIRA-86 and MSISE-90). We observed, the mean temperature profiles have closer agreement with MSISE-90 than CIRA-86. The temperature profiles measured by lidar and HALOE satellite overpass nearby lidar site are generally in agreement with each other. The systematic and statistical errors in deriving temperature are found to be uniform for both the stations, as 1 K at 50 km, 3 K at 60 km and 10 K at 70 km. The special features of mesospheric temperature inversion (MTI) and double stratopause structure (DBS) are also addressed for both the stations.  相似文献   

8.
Quartz-UV occultation measurements by the satellite Interkosmos-16 have been used to calculate ozone densities at altitudes between 50 and 90 km for the period August to October 1976. Below 65 km densities agree well with the Krueger-Minzner-model. Mesopause densities have been studied in some detail. A certain percentage of the profiles show close correlation with the model of Shimazaki and Laird (with a pronounced minimum below the mesopause) while others fit better to the Park and London model (no minimum). This variability of the ozone density may be caused by different processes in the photo-chemistry of ozone. Two possible causes, the temperature dependent rate coefficients and the odd hydrogen processes are discussed in greater detail.  相似文献   

9.
Observations of total ozone at low latitudes in Brazil have been made using Dobson spectrophotometers since 1974 for Cachoeira Paulista (23.1° S, 45° W) and since 1978 for Natal (5.8° S, 35.2° W). Annual averages, 12 months and 36 months running averages have been analyzed. Spectral analyses of the data revealed that the most important periods found (confidence level> 90%) were: for Natal, 2.5 years (93.1%, quasi-biennial oscillation-QBO) and 10 years (98,2%, possibly the solar cycle signal); for Cachoeira Paulista, 2.4 years (96.8%, QBO) and 8 years (99.6%). The difference in total ozone between maximum and minimum solar cycles were estimated, using yearly averages of total ozone. For solar cycle 21, 1.16% and 1.26% for Natal and Cachoeira Paulista were found; for solar cycle 22, a larger difference of 3.8% for Natal and 4.1% for Cachoeira Paulista were found. The corresponding variation in UV-B at 300 nm, using Beer's law, is 8–10% for C. Paulista and 4–5% for Natal, with maxima occurring during the minimum of the solar cycle.  相似文献   

10.
Using data from the CHEM instrument on the AMPTE/CCE spacecraft, we follow the development of the ring current energy spectra (1–300 keV/e) of the ion species H+, O+, He+, and He++ in the post-noon and pre-noon local time sectors during the geomagnetic storm of February 1986. By comparing displays of phase space density, f, vs. magnetic moment, μ, we can distinguish between enhancements due to newly injected ions and those due to adiabatic energization of a pre-existing population. In both the local time sectors, the initial drop in Dst is associated with enhanced phase space densities of all species. The spectra observed during the pass when the Dst dropped to a minimem of −312 nT show a strong local time asymmetry. In the post-noon sector, the spectra showed the influx of a new population of ions, rich in O+ and He++. In the pre-noon sector, the flux increase was consistent with adiabatic energization of the ion population injected earlier in the storm. This local time difference is consistent with a greatly enhanced convection electric field which brings a new population from the magnetotail to the post-noon, but not the pre-noon local time sector.  相似文献   

11.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

12.
The stellar occultation technique is a clean and powerful means of detecting and quantifying minor gases in the earth's atmosphere. The results obtained are totally insensitive to knowledge of the absolute flux of the star, and are not influenced by instrument calibration problems. Pioneering observations of nocturnal mesospheric ozone and thermospheric molecular oxygen by the stellar occultation technique were made in 1970 and 1971 with the Wisconsin stellar photometers on board the Orbiting Astronomical Observatory-2. A limb crossing geometry was used. The high resolution Princeton ultraviolet spectrometer aboard Copernicus was used in the summers of 1975, 1976 and 1977 to measure altitude profiles of molecular hydrogen, atomic chlorine and nitric oxide in addition to ozone and molecular oxygen. A limb grazing geometry was employed. The ozone densities show wide variation from orbit to orbit and particularly betewen the OAO-2 and Copernicus observations. A H2 density of 1×108 cm?3 at 95 km, and a NO density less than 106 cm?3 for altitudes greater than 85 km were measured.  相似文献   

13.
The data from the synchronous-orbit satellites of the Gorizont series are used to study the dependences of the ion flux variation amplitudes in the synchronous altitude region (the diurnal behaviour) on particle energies and on the form and rigidity of the particle energy spectrum. The proton fluxes were measured in the energy range E 60–120 keV, and the [N,0]2+ and [C,N,0]4+ ion fluxes in the energy range E 60–70 keV/e.

The ratio of the diurnal variation amplitudes of the studied ions is shown to correspond to the similarity of their energy spectra in the E/Q representation. The magnetically-quiet time gradient of the distribution function F(μ,J,L) in the synchronous-orbit region is shown to be (∂F/∂L)=0 for the H+ and [N,0]2+ ions and (∂F/∂L) > 0 for the [C,N,0]4+ ions (at the values of μ corresponding to the examined energy ranges). During magnetically-disturbed periods the inner boundary of the (∂F/∂L)=0 region shifts to lower L and (∂ F/∂L) = O in the synchronous altitude region must be also for the [C,N,O]4+ ions.  相似文献   


14.
The processes leading to enhancements in mid latitude nitric oxide (NO) densities following geomagnetic storms have been investigated using the University College London (UCL) Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. A comparison of calculated storm time and quiet time NO densities at 110 km altitude reveals the presence of aurorally produced NO at both high and mid latitudes for several days after subsidence of activity. At 150 km, the NO enhancements are shorter lived and remain for up to approximately 2 days after the storm. By separating the contribution of chemical production and loss, horizontal and vertical advection, and molecular and eddy diffusion in the calculation of NO densities, we show that at 150 km altitude, horizontal transport must be taken into consideration if post-storm mid latitude enhancements are to be reproduced. Chemical production of NO at high latitudes continues for up to 2 days after subsidence of a storm at altitudes of around 150 km. We show that equatorward winds at this altitude are sufficiently strong to transport the aurorally produced NO to mid latitudes. Vertical diffusion transports NO from altitudes of 150 km and above, to lower altitudes where it is longer lived. At 110 km altitude, chemical, diffusive and advective terms must all be included in the calculation of NO density in order to simulate realistic mid latitude enhancements. We propose that it is the combined effects of increased chemical production, downward diffusion from altitudes of 150 km and above, and transport by winds that lead to increases in mid latitude NO density at altitudes of around 110 km. This is the first detailed study of the causes of post-storm mid latitude NO enhancements to use a three-dimensional general circulation model.  相似文献   

15.
The variation in the solar constant, S(t), is reproduced by the SOLAR2000 Research Grade v1.05 empirical solar irradiance model and is described for 5 solar cycles between cycles 18 and 23 (February 14, 1947 through May 31, 2000). This solar constant variation is dependent upon the derivation data sets and the formulation of SOLAR2000 which are described in more detail. The S(t) temporal variability in SOLAR2000 is shown for the solar spectrum between 1–122 nm. The variability is consistent with previous discussions in the literature and a new result is shown where the 1–122 nm wavelength range accounts for about 5–14% of the standard deviation reported in the ASTM E-490 standard. The minimum-maximum range of S(t) variation due to 1–122 nm variability is between 1367.2768 Wm−2 on 1986-152 and 1367.2877 Wm−2 on 1957-340. The mean S(t) in these data is 1367.2796 Wm−2.  相似文献   

16.
An altitude profile of the ozone concentration from 55 to 95 km was measured at sunset in January by simultaneous measurements of the 1.27 μm radiation and the solar UV radiation using rocket-borne radiometers at Uchinoura, Japan (31°N). The ozone profiles deduced by two different methods agree with each other at approximately 70 km. The profile was consistent with our previous results obtained at the same station in September, and with the sunset profile obtained at Wallops Island (38°N) during the WMO/FAA/NASA international ozone rocketsonde intercomparison. Our data show no seasonal variation of ozone in the 55 – 95 km region at Uchinoura.  相似文献   

17.
To investigate the vast area of Russia, a mobile scientific facility based in a railway carriage was developed. It is capable to perform continues measurements being coupled in a passenger train traveling along railroads. It was first equipped with a spectrometer for remote sensing of ozone and nitrogen dioxide in the atmosphere for the transcontinental observations into the chemistry of the atmosphere-4 expedition performed from February 18 to March 5, 1998. A twilight DOAS method, which was applied for retrieval of the nitrogen dioxide profiles basing on spectral measurements at the visible wavelengths (434–451 nm), is described in the paper. Main features of a new algorithm for retrieval of the ozone profile and total content using the differential structure of the UV spectrum (310–335 nm) are presented. The ozone and nitrogen dioxide contents are obtained and shortly validated against available alternative data.  相似文献   

18.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   

19.
Air depression during Antarctic spring, its long-term behaviour and connection with ozone content has been investigated on base of rocket data for polar regions and total ozone data sets for South pole (TOMS data) for 1979–1990. It was shown, that air pressure depression near South polar region in September in the lower stratosphere has a visible (about 5% per decade) negative trend similar to the tendency which total ozone records reveal. Rather high correlation (+0.82) between air pressure in the stratosphere and total ozone content for spring in Antarctica was found.  相似文献   

20.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号