首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The navigation of the ESA spacecraft Giotto to its encounter with comet P/Halley on 14 March 1986 required just 10% of the fuel available. Although the spacecraft was damaged by dust impacts during its close flyby at the nucleus of P/Halley it was retargeted to return close to Earth to maintain the option to extend the mission to encounter another comet, P/Grigg-Skjellerup on 10 July 1992.

On 2 April 1986 the spacecraft was put into hibernation configuration and had been orbiting the Sun in the ecliptic with an orbital period of 10 months. On 19 February 1990 it was reactivated, spacecraft subsystems and the payload checked out to determine its health status.

On 2 July 1990 Giotto performed succesfully the first-ever Earth gravity assist manoeuvre of a spacecraft approaching the Earth from deep space and was retargeted for comet P/Grigg--Skjellerup. It was concluded that the spacecraft is ready to provide valuable data during a potential encounter with a second comet.  相似文献   


2.
ISAS's (Institute of Space and Astronautical Science) project for the exploration of comet Halley consists of two spacecraft, Sakigake and Suisei, launched on 7 January 1985 and 18 August, respectively.

Sakigake passed the sunward side of the comet on 11 March 1986 with a miss distance of 6.99 million km. Three experiments, a plasma wave probe with dipole and search-coil antennae, a magnetometer with three axis ring core sensor on an extended boom and a four-grid Faraday cup attached to the inner side of the wall of the spacecraft, detected various phenomena caused by the comet at a distance as far as 7 million km.

The other spacecraft, Suisei, flew by the comet on its sunward side with a miss distance of 151 thousand km on 8 March 1986. It carried two experiments, an ultraviolet imager and an energy analyzer for ions. The UV imager was able to take the first image of the hydrogen cloud of comet Halley on 26 November 1985. With this experiment, the spin period of the cometary nucleus, location of jets, amount of water evaporation, distribution of hydrogen density inside cloud, etc. were clarified. The energy analyser experiment provided information on the intensive interaction between cometary and solar wind ions.  相似文献   


3.
For spacecraft without on-board navigation capability, their ability to fly close to target comets is limited primarily by the comet's ephemeris uncertainty. Factors contributing to cometary ephemeris uncertainties include measurement errors, star catalog errors, and offsets between the comet's center of mass and its observed center of light. The situation is further complicated by nongravitational forces acting upon a comet's nucleus and the paucity of observers currently making astrometric observations of comets. For comet Halley, the nongravitational forces affecting this comet's motion are consistent with the rocket effect of an outgassing water ice nucleus; the nucleus is apparently rotating in a direct sense about a stable spin axis. Accurate comet Halley ephemerides for close spacecraft flybys will require continued efforts to refine the existing nongravitational force model. In addition, the various flyby missions to comet Halley will require a well organized network of astrometric observers. These observers must rapidly reduce their observations in early 1986, thus allowing continuous updates to the comet's ephemeris just prior to the spacecraft flybys in March 1986.  相似文献   

4.
In March 6 and 9, 1986 the spacecrafts ‘Vega-1’ and ‘Vega-2’ have flown through the coma of comet Halley and have carried measurements of plasma, energetic particles, magnetic field and plasma waves along its trajectory. A short review of these measurements and its comparison with theoretical models of solar wind interaction with comets are given.

The spacecrafts ‘Vega-1’ and ‘Vega-2’ have studied the solar wind loading by cometary ions, the structure of cometary bow shock and the processes in the inner coma of comet Halley. Exactly in this sequence we discuss the results of measurements and compare them with the theory.  相似文献   


5.
ESA's Giotto mission to Halley's comet is a fast flyby in March 1986, about four weeks after the comet's perihelion passage when it is most active. The scientific payload comprises 10 experiments with a total mass of about 60 kg: a camera for imaging the comet nucleus, three mass spectrometers for analysis of the elemental and isotopic composition of the cometary gas and dust environment, various dust impact detectors, a photopolarimeter for measurements of the coma brightness, and a set of plasma instruments for studies of the solar wind/comet interaction. In view of the high flyby velocity of 68 km/s the experiment active time is very short (only 4 hours) and all data are transmitted back to Earth in real time at a rate of 40 kbps. The Giotto spacecraft is spin-stabilised with a despun high gain parabolic dish antenna inclined at 44.3° to point at the Earth during the encounter while a specially designed dual-sheet bumper shield at the other end protects the spacecraft from being destroyed by hypervelocity dust impacts. The mission will probably end near the point of closest approach to the nucleus when the spacecraft attitude will be severely perturbed by impacting dust particles leading to a loss of the telecommunications link.  相似文献   

6.
The electrostatic charging of satellites in space and the interactions with the plasma in the near surroundings are investigated by making use of symmetric models. In this case, the Vlasov-Poisson system describing the ambient plasma disturbances and the plasma emitted from the surface can be integrated self-consistently within a numerical iteration scheme, and the current balance yields the floating potential of the probe. The spacecraft charging and the potentials in its surroundings are investigated for the following plasma and emission conditions: (1) in the ionosphere in the case of very negative surface potentials, (2) in the solar wind with regard to the HELIOS mission and (3) in the near vicinity of the comet Halley, where a very strong plasma emission due to the impact of neutral gases onto the surface must be regarded. Finally, the importance of the shielding due to the ambient plasma is discussed.  相似文献   

7.
Various experimental data acquired during the visit of Halley's comet in 1986 have shown that the amount of carbon produced due to photodissociation of parent carbon bearing species is not ample enough to explain the observations. This requires the presence of an additional source of atomic carbon. One of the possible source could be auroral-type activities resulting from the precipitation of high-energy "auroral electrons" of solar wind origin, the evidence of which have been inferred from many observations at comet Halley. We have developed a coupled chemistry-transport model to study the role of auroral and photoelectron impact as well as of chemistry on the modelling of carbon in the inner coma (< or = 10(4) km) of comet Halley. Our study suggest that electron impact dissociation of CO is the major source of carbon production in the inner coma, not the recombination of CO+ as suggested by earlier workers, while transport is the main loss process.  相似文献   

8.
The Halley Optical Probe Experiment (HOPE) on board the Giotto spacecraft has provided the first in-situ measurements, both of the dust and of some gaseous species, from inside the coma of the comet. The instrument has already been described /1/, together with first results /2/. The purpose of this note is to show how optical measurements can lead to in-situ information, how those were obtained during the 13–14 march 1986 Halley fly-by, and what is the status of the data analysis.  相似文献   

9.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

10.
From the discrete spectra of the emissions from the comet in the frequency range from 30 to 195 kHz named CKR (Cometary Kilometric Radiation), movements of the bow shock at comet Halley are concluded, i.e., the observed CKR emissions can be interpreted as being generated and propagating from the moving shock. The motion of the shocks are possibly associated with time variation of the solar wind and of the cometary outgassings. By in-situ plasma waves observations using PWP (Plasma Wave Probe) onboard the Sakigake spacecraft, the characteristic spectra of the electrostatic electron plasma waves, the electron cyclotron harmonic waves, and the ion sound waves have been detected during the interval of the Halley's comet fly-by. Compared with the results of a Faraday cup observation and a magnetometer, it is concluded that these plasma wave phenomena are the manifestation of the ion pick-up processes. The ion pick-up processes are taking place even in the remote region within a distance range from 7×106 to 107 km from the cometary nucleus.  相似文献   

11.
Observations of the distribution and evolution of a number of the major constituents of the neutral coma (CN, C2, CH, O, H, Na) of Comet Halley were made during two observing periods, each of 3 weeks duration, from the Table Mountain Observatory, California. The first period was pre-perihelion, in late November/December 1985. The second period, from Feb 28 to March 22 1986, covered the five close spacecraft encounters with Halley, and when ICE flew some 20 M Km upstream of Halley. Sodium emission was recorded in early Dec 1985 from the near-nuclear region at a heliocentric distance of 1.4 AU, an observation confirmed with the UCL Doppler Imaging system. The CN coma could be detected to an outer diameter of more than 4M Km in Dec 1985, and 5 – 6M Km in early March 1986, allowing the production of heavy cometary pick-up ions to be estimated. Observations of the cometary ion coma (H2O+ and CO+ ions) showed considerable variability from day to day, particularly during the period of the spacecraft encounters. These observations have been used, in conjuction with the neutral coma data, to map the flow field of cometary ions. In early Dec. 1985, Halley developed a traditional “type I” ion tail, which persisted until late April 1986. It has also been possible to evaluate the ion flow fields within the narrow core of the ion tail, and in the surrounding diffuse, low density, regions populated by pick-up and extracted cometary ions, and by slowed solar wind ions. Tail disconnection events were observed on several occasions, particularly between the VEGA 2 and GIOTTO encounters, and with a highly spectacular event on March 19 1986.  相似文献   

12.
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios.  相似文献   

13.
Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading); hence, they can energize the incoming ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind. It is suggested that Comet Halley may be the most efficient “cosmic ray shock” in the solar system.  相似文献   

14.
Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain models, and a significant fraction of comet nuclei (approximately 5%) may be in the form of preserved circumstellar matter. Comet nuclei probably formed in much more benign environments than primitive meteorites.  相似文献   

15.
The process of mass loading of the solar wind by cometary ions, which forms comet tails, has been observed throughout the coma of comet Halley. Three distinct regimes were found where the nature of the energy and momentum coupling between solar wind and cometary ions is different. Outside the bow shock, where there is little angular scattering of the freshly ionised particles, the coupling is described by the simple pickup trajectory and the energy is controlled by the angle between the flow and the magnetic field. Just inside the bow shock, there is considerable scattering accompanied by another acceleration process which raises some particle energies well above the straightforward pickup value. Finally, closer to the nucleus, the amount of scattering decreases and the coupling is once more controlled by the magnetic field direction.  相似文献   

16.
During the encounter between the ICE spacecraft and Comet Giacobini-Zinner, intense fluxes of energetic heavy ions were observed at distances up to 4 × 106 km from the comet. These ions were observed with steep energy spectra and highly anisotropic angular distributions, and are consistent with a composition comprising mainly ions from the water group. The flux versus time profiles have a general fall-off with increasing distance from the comet, but are modulated by both changes in the magnetic field direction and the solar wind velocity, the magnetic field variations being mainly responsible for variations on a time scale of minutes, and the solar wind velocity variations being responsible for much larger time-scale modulations, such as the inbound/outbound asymmetry of the intensity profile. In this paper we present correlated observations of heavy ions, the solar wind velocity and the magnetic field direction, and compare the observations of the ions with the theoretical predictions for their variations with distance from the comet, with the solar wind velocity and with the magnetic field direction.  相似文献   

17.
GIOTTO, the probe which is presently developed by the European Space Agency, will encounter comet Halley in March 1986 with a relative velocity of 69 km/s. The fore section of the surface will be submitted to the bombardment of dust grains and neutral molecules in the final phase of the mission, like that of an Earth orbiter during atmospheric re-entry. These particles have a kinetic energy of 24 eV per a.m.u.; they produce secondary ions and electrons which form a plasma cloud around the body and control the electric potential of its surface. This paper is a review of the work which has been performed on the subject by dedicated study groups; the purpose of their action was to gather information and produce new findings which might have an influence on the design of the spacecraft and help in the interpretation of the data collected by the scientific payload.

The effect of impact induced plasma may already be significant at 105 km from the comet nucleus; at a distance of 1000 km the flux of ions and electrons produced by cometary dust and neutrals will possibly exceed that of the ambient plasma by more than three orders of magnitude. It is expected that the spacecraft surface potential will be positive and will reach at least a few tens of volts; coating the leading surface of the spacecraft with a thin layer of gold or silver will help reducing the emission of ions from neutral gas. Computer simulation models are used to predict the structure of the charged particle density distribution in the vicinity of the surface. Effects associated with the wake and differential charging are also discussed. The significance of these results is conditioned by the validity of the models and the largest source of uncertainty seems to be associated with the plasma generated by dust impact.  相似文献   


18.
Venera-Halley mission is to be launched to Venus in Dec. 1984. It will fly by Venus in June 1985. Separation of the cometary probe and Venera descend module will take place at that time. The gravitational swing-by at Venus will provide the encounter with the Halley comet in March 1986. The remote sensing of the inner coma (TV-imagery, spectrometry in the region from 1200 A to 12 μm, polarimetry) and of the nucleus, direct measurements of dust fluxes, dust composition, plasma and magnetic field are planned in the framework of multinational cooperation.  相似文献   

19.
Preliminary results from the JPA instrument on Giotto indicate that Comet Halley, even on the flanks, has a bow shock which moves backwards and forwards over the spacecraft. To understand the structure properly will require more detailed investigation of the relationships between three particle populations, cometary ions, solar wind ions and electrons.  相似文献   

20.
The European Space Agency's Solar Polar spacecraft is scheduled for launch in 1986. A solar X-ray and cosmic gamma ray burst detector will be aboard. Although the solar polar mission will not provide the long baselines originally planned, due to the cancellation of the NASA spacecraft, it is shown that arrival time analysis between the remaining ESA spacecraft and other missions will nevertheless achieve extremely precise localizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号