首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Probability density expressions associated with the noncoherent detection of a sinusoidal signal have been obtained. The signal is assumed to be imbedded in sinusoidal clutter at the same frequency and narrow-band Gaussian noise. The density expressions are shown to be a function of the signal-to-noise power ratio and the clutter-to-noise power ratio. The expressions have been numerically evaluated for a number of conditions, and the results under each reception hypothesis are presented graphically. Under large-sample conditions, the probability density for a multisample test statistic is shown to be Gaussian, and the probability of detection expression is written such that commonly available tabulated data can be utilized to determine the probabilities.  相似文献   

2.
The optimum detector for a random signal, the estimator-correlator, is difficult to implement. If the power spectral density (PSD) of a continuous time signal is known, a locally optimum detector is available. It maximizes the deflection ratio (DR), a measure of the detector output signal-to-noise ratio (SNR). A discrete version of this detector is developed here, called the discrete-MDRD, which takes a weighted sum of the spectral components of the signal data as the detection statistic. Its derivation is applicable to nonwhite noise samples as well. A comparison of this new detector against three other common types, through their DR values and simulation results, reveals that the discrete-MDRD is near optimal at low SNRs. When the PSD of a signal is not known, a common test statistic is the peak of the PSD of the data. To reduce spectral variations, the PSD estimator first divides the data sequence into several segments and then forms the averaged PSD estimate. The segment length affects the DR values; the length that maximizes the DR is approximately the reciprocal of the signal bandwidth. Thus for unknown signal PSD, a detector that approaches the maximum DR is realizable from just the knowledge of the signal bandwidth, which is normally available. Examples and simulation results are provided to illustrate the properties and performance of the new detector  相似文献   

3.
A likelihood receiver for a Gaussian random signal process in colored Gaussian noise is realized with a quadratic form of a finite-duration sample of the input process. Such a receiver may be called a "filtered energy detector." The output statistic is compared with a threshold and if the threshold is exceeded, a signal is said to be present. False alarm and detection probabilities may be estimated if tabulated distributions can be fitted to the actual distributions of the test statistic which are unknown. Gamma distributions were fitted to the conditional probability densities of the output statistic by equating means and variances, formulas for which are derived assuming a large observation interval. A numerical example is given for the case in which the noise and signal processes have spectral densities of the same shape or are flat. The optimum filter turns out to be a band-limited noise whitener. The factors governing false alarm and detection probabilities are the filter bandwidth, the sample duration, and the signal level compared to the noise. Two sets of receiver operating characteristic curves are presented to complete the example.  相似文献   

4.
Joint maximum likelihood estimators are presented for the signal amplitude and noise power density in a coherent PCM channel with white Gaussian noise and a correlation receiver. The estimates are based upon the correlation coefficient outputs of the receiver. From these estimators, an estimator for the quantity (received signal energy)/bit/,(noise power)/(unit bandwidth) upon which the error probabilities depend, is derived. This estimator is shown to be useful as 1) a point estimator for the signal-to-noise ratio for the higher values of this ratio (about 4 dB or greater), and 2) an easily calculated statistic upon which to base data acceptance or rejection criteria. The acceptance or rejection levels are obtained by the use of confidence interval curves in conjunction with word error probability data.  相似文献   

5.
The performance of several new clutter-reduction filters suitable for rectangular-pulse radar systems is investigated. The new filters consist of various approximations and modifications of two filters known to be optimal for certain criteria: the well-known Urkowitz filter which optiizes the clutter improvement ratio, and the newer sidelobe reduction filter which minimizes output noise power subject to peak sidelobe constaints. The new filters are compared usig five basic criteria: clutter improvement ratio, signal-to-noise ratio, sidelobe peak ratio, pulse compression ratio, and filter complexity. The results are summarized in tabular and graphical form.  相似文献   

6.
The binary detection problem is considered. Under an arbitrary noise environment, the input sample space can be transformed into a multinomial vector. Based on observations of this vector, the Neyman-Pearson optimal detector is developed for a known signal. When the signal strength is unknown, the likelihood ratio principle is followed to obtain consistent tests which use the Pearson's chisquare statistic. The resulting detectors are compared to others in terms of asymptotic relative efficiency under some actual noise distributions.  相似文献   

7.
We consider the problem of detecting a stochastic signal in white not-necessarily-Gaussian noise, using vector valued observations. The locally optimal detector is presented and its performance evaluated. The least-favorable signal spectrum and noise density (over specified classes) are found, and it is shown that the detector using these least-favorable assumptions is minimax robust. The class of spectra is that of any stochastic signal of specified power whose spectrum can be bounded from above and from below by two given positive functions. The class of densities is the ε-contamination model. We present examples of the performance achievable with the robust detector in one of these the spectral uncertainty class corresponds to the unknown Doppler shift of a radar return signal. It is demonstrated that the standard matched-filter's performance degradation with increasing Doppler shift can be avoided almost entirely through use of the robust processor  相似文献   

8.
The detection of signals in an unknown, typically non-Gaussian noise environment, while attempting to maintain a constant false-alarm rate, is a common problem in radar and sonar. The raw receiver data is commonly processed initially by a bank of frequency filters. The further processing of the outputs from the filter bank by a two-sample Mann-Whitney detector is considered. When the noise statistics in all filters are identical, the Mann-Whitney detector is distribution free, i. e., the false-alarm probability may be prescribed in advance regardless of the precise form of the noise statistics. The primary purpose of this paper is to demonstrate the potential advantage of nonparametric detectors over conventional detectors. The signal detection performance of the Mann-Whitney detector is compared to that of an ordinary linear envelope detector plus integrator in the presence of Gaussian and several hypothetical forms of non-Gaussian noise. This comparison is made for both uniform and nonuniform distributions of noise power across the filter bank. Besides providing a much more constant false-alarm rate than the conventional detector, the Mann-Whitney detector's signal detection performance is found also to be much less sensitive to the form of the noise statistics. In one case, its detection sensitivity is found to be 11 dB better than that of the conventional detector. Even when the noise power density is made moderately nonuniform across the filter bank, the detection performance of the Mann-Whitney detector is found not to be significantly affected.  相似文献   

9.
An analysis of the output of three alternative matched filter configurations in an infrared scanning system model is presented. The sensor is corrupted by thermal noise, generation-recombination noise, photon noise, and modulation noise, the latter providing an extreme discoloration in the signal passband. Expressions for the signal voltage density spectrum, signal pulse shape, noise power spectrum, and average noise power at the matched filter output are derived where the integral evaluations attendant to these derivations do not appear elsewhere in the literature. The paper also provides graphical displays of the signal-to-noise power ratio at the filter output versus various system parameters, noise power spectrum out of the matched filter versus ?, and the signal pulse shape out of the filter versus time. Also included are discussions of practically realizable approximations to the matched filters and curve fitting techniques for the signal pulse shape function.  相似文献   

10.
CFAR detection of distributed targets in non-Gaussian disturbance   总被引:1,自引:0,他引:1  
The subject of detection of spatially distributed targets in non-Gaussian noise with unknown statistics is addressed. At the design stage, in order to cope with the a priori uncertainty, we model noise returns as Gaussian vectors with the same structure of the covariance matrix, but possibly different power levels (heterogeneous environment). We also assume that a set of secondary data, free of signal components, is available to estimate the correlation properties of the disturbance The proposed detector assumes no a priori knowledge about the spatial distribution of the target scatterers and ensures the constant false alarm rate (CFAR) property with respect to both the structure of the covariance matrix and the power levels. Finally, the performance assessment, conducted modeling the disturbance as a spherically invariant random process (SIRP), confirms its validity to operate in real radar scenarios  相似文献   

11.
We study the design of constant false-alarm rate (CFAR) tests for detecting a rank-one signal in the presence of background Gaussian noise with unknown spatial covariance. We look at invariant tests, i.e., those tests whose performance is independent of the nuisance parameters, like the background noise covariance. Such tests are shown to have the desirable CFAR property. We characterize the class of all such tests by showing that any invariant decision statistic can be written as a function of two basic statistics which are in fact the adaptive matched filter (AMF) statistic and Kelly's generalized likelihood ratio statistic. Further, we establish an optimum test in the limit of low signal-to-noise ratio (SNR), the locally most powerful invariant (LMPI) test. We also derive the bound for the probability of detection of any invariant detector, at a fixed false-alarm rate, and compare the LMPI and the published detectors (Kelly and AMF) to it  相似文献   

12.
The power spectral density of the intermediate frequency signal in a coherent Doppler navigation radar is derived. The effects of antenna parameters, periodic frequency instabilities, signal two-way transit time, and transmitter frequency modulation noise are considered Several examples based on the measured frequency modulation noise of a solid-state source transmitter are presented. The results indicate the degree of loss in signal-to-noise ratio, and spectrum broadening due to an increase in signal transit time and/or frequency modulation noise.  相似文献   

13.
The application of existing estimation theory to the problem of specification and performance of passive sonar spectral estimators is considered. The classification function is addressed, so that the signal is assumed to be present, and so that the energy arrival angle is known. The spatial filter considered is a line array of M equally spaced omnidirectional hydrophones. Signal and ambient noise are both zero-mean, wide-sense, stationary Gaussian random processes that differ in their spatial correlation across the face of the array. The signal is a plane wave that can be made totally spacially corrected between array elements by inserting delays between sensors to invert the signal propagation delay. The noise correlation is a function of frequency, bandwidth, element separation, and the relative time delay between sensors. Under these assumptions, the Cramer-Rao lower bound is derived for the class of unbiased estimates of signal power in a narrow frequency band at the hydrophone in the presence of correlated ambient noise of known power. The bound is examined numerically, resulting in a threshold phenomenon with M that constitutes a new design consideration. In addition, there is a striking insensitivity to realistic values of ambient noise correlation, and there are ranges in signal-to-noise ratio for which one gains more by increasing M than by increasing the bandwidth-time product. Specific processors, including a new unbiased estimator when noise power is unknown, are developed.  相似文献   

14.
The problem of detecting distributed targets in compound-Gaussian noise with unknown statistics is considered. At the design stage, in order to cope with the a priori uncertainty, we model noise returns as Gaussian vectors with the same structure of the covariance matrix, but possibly different power levels. We also assume that a set of secondary data, free of signal components, is available to estimate the covariance matrix of the disturbance. Since no uniformly most powerful test exists for the problem at hand we devise and assess two detection strategies based on the Rao test, and the Wald test respectively. Remarkably these detectors ensure the constant false alarm rate property with respect to both the structure of the covariance matrix as well as the power levels. Moreover, the performance assessment, conducted also in comparison with the generalized likelihood ratio test based receiver, shows that the Wald test outperforms the others and is very effective in scenarios of practical interest for radar systems.  相似文献   

15.
Radiometric detection of spread-spectrum signals in noise ofuncertain power   总被引:2,自引:0,他引:2  
The standard analysis of the radiometric detectability of a spread-spectrum signal assumes a background of stationary, white Gaussian noise whose power spectral density can be measured very accurately. This assumption yields a fairly high probability of interception, even for signals of short duration. By explicitly considering the effect of uncertain knowledge of the noise power density, it is demonstrated that detection of these signals by a wideband radiometer can be considerably more difficult in practice than is indicated by the standard result. Worst-case performance bounds are provided as a function of input signal-to-noise ratio (SNR), time-bandwidth (TW) product and peak-to-peak noise uncertainty. The results are illustrated graphically for a number of situations of interest. It is also shown that asymptotically, as the TW product becomes large, the SNR required for detection becomes a function of noise uncertainty only and is independent of the detection parameters and the observation interval  相似文献   

16.
The general (nth order) phase-locked loop is analyzed, of which the amplitude is not constant. The input carrier signal is amplitude-modulated by wide-band stationary Gaussian noise, and the signal, superposed with the additive white stationary Gaussian noise, enters the nonlimited phase-locked loop. Under the above assumptions the loop can be shown to constitute an n-dimensional vector Markov process, so that the process satisfies the n-dimensional Fokker-Plank equation. The probability density function depends on the effective loop signal-to-noise ratio and the effective modulation power.  相似文献   

17.
一种新的路面不平度模拟方法的研究   总被引:1,自引:0,他引:1  
讨论了一种关于路面不平度模拟信号生成的新方法。根据路面不平度的统计特性,构造出一个下三角滤波器,再由实测信号的统计特征来确定滤波器的值,并利用正态白噪声通过该滤波器来得到所需的信号。实验表明该信号较真实地反映了路面的统计特征,在实际应用中能取得较好的模拟效果。  相似文献   

18.
19.
A model for an optical position estimation system is developed employing the photon Poisson process theory. The position estimate is based upon the definition of a center of gravity (CG) of the power density profile of the optical source on the focal plane. An estimator structure is derived using maximum likelihood estimates of the image profile. The resulting estimate of the CG is shown to be unbiased and its variance is obtained. The variance is shown to depend upon the signal energy and noise level as well as upon the distance of the center from the initial counting point. Thus, a composite estimation system is presented which reduces the variance and yet yields a simple structure. Studies on star estimation have yielded position accuracies better than 0.1 seconds of arc for a 2.5 visual magnitude star in a background of equivalent intensity.  相似文献   

20.
A modified form of the basic Savage statistic is considered and the performance of a modified Savage (MS) nonparametric detector using this modified statistic is derived. Also, a detector using a modified rank squared statistic (MRS) is introduced. The asymptotic relative efficiency (ARE) of the detectors is determined for chisquare, Rician, and log-normal signal fluctuations when the background noise is assumed Gaussian. The ARE performance of the generalized sign (GS) and Mann-Whitney (MW) detectors is also determined for these families of fluctuations. The ARE performance of the various detectors is then compared, and the results of a computer simulation are presented in which, for a finite number of samples, the performance of the modified detectors is compared with the performance of the GS and MW detectors. It is shown that when using a large number of reference noise samples, the ARE of the GS and MW detectors, the MRS and RS detectors, and the MS and Savage detectors are 0.75, 0.868, and 1, respectively. It is also shown that when using a finite number of reference noise samples the MS and MRS detectors can give a superior performance to that obtained with the MW detector, and that this is particularly true in the cases in which the degree of signal fluctuation is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号