共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Van Doorsselaere I. Arregui J. Andries M. Goossens S. Poedts 《Space Science Reviews》2005,121(1-4):79-89
We will discuss the observed, heavily damped transversal oscillations of coronal loops. These oscillations are often modeled as transversal kink oscillations in a cylinder. Several features are added to the classical cylindrical model. In our models we include loop curvature, longitudinal density stratification, and highly inhomogeneous radial density profiles. In this paper, we will first give an overview of recently obtained results, both analytically and numerically. After that, we shed a light on the computational aspects of the modeling process. In particular, we will focus on the parallellization of the numerical codes. 相似文献
2.
Parameters of expanding magnetic loops and arches and of mass flows generated by them in the corona have been computed in a 1D two-fluid approximation. Two possible trigger mechanisms of the coronal transients have been considered: (i) sudden increase of the background magnetic field strength, and (ii) heating and compression plasma inside these magnetic structures. We discuss the formation of shock waves and their dependence on dynamics and geometry of the magnetic structures. 相似文献
3.
Jeongwoo Lee 《Space Science Reviews》2007,133(1-4):73-102
Solar active region coronae are known for strong magnetic fields permeating tenuous plasma, which makes them an ideal astronomical laboratory for magnetohydrodynamics research. It is, however, relatively less known that this physical condition also permits a very efficient radiation mechanism, gyro-resonant emission, produced by hot electrons gyrating in the coronal magnetic field. As a resonant mechanism, gyro-emission produces high enough opacity to fully reveal the coronal temperature, and is concentrated at a few harmonics of the local gyrofrequency to serve as an excellent indicator of the magnetic field. In addition, the polarization of the ubiquitous free–free emission and a phenomenon of depolarization due to mode coupling extend the magnetic field diagnostic to a wide range of coronal heights. The ability to measure the coronal temperature and magnetic field without the complications that arise in other radiative inversion problems is a particular advantage for the active region radio emissions available only at these wavelengths. This article reviews the efforts to understand these radiative processes, and use them as diagnostic tools to address a number of critical issues involved with active regions. 相似文献
4.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere
and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field
lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably
the cause of the observed extremely low values of the Ne/Mg abundance ratio.
In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential
magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary
of these dense structures must be considered.
In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting
components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations
and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
M. J. Penn J. R. Kuhn J. Arnaud D. L. Mickey B. J. Labonte 《Space Science Reviews》1994,70(1-2):185-188
Observations made during the 1991 total solar eclipse and recent observations from NSO/Sac Peak are discussed. The ground-based density measurements will be complimentary to SOHO observations, particularly SOHO electron density measurements.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation 相似文献
6.
Solar Nebula Magnetohydrodynamics 总被引:1,自引:0,他引:1
The dynamical state of the solar nebula depends critically upon whether or not the gas is magnetically coupled. The presence of a subthermal field will cause laminar flow to break down into turbulence. Magnetic coupling, in turn, depends upon the ionization fraction of the gas. The inner most region of the nebula (≲0.1 AU) is magnetically well-coupled, as is the outermost region (≳10 AU). The magnetic status of intermediate scales (∼1 AU) is less certain. It is plausible that there is a zone adjacent to the inner disk in which turbulent heating self-consistently maintains the requisite ionization levels. But the region adjacent to the active outer disk is likely to be magnetically ``dead.' Hall currents play a significant role in nebular magnetohydrodynamics. Though still occasionally argued in the literature, there is simply no evidence to support the once standard claim that differential rotation in a Keplerian disk is prone to break down into shear turbulence by nonlinear instabilities. There is abundant evidence—numerical, experimental, and analytic—in support of the stabilizing role of Coriolis forces. Hydrodynamical turbulence is almost certainly not a source of enhanced turbulence in the solar nebula, or in any other astrophysical accretion disk. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
Spicules are known as one of the most prevalent small-scale dynamic phenomena on the sun, which are likely to give considerable contribution to coronal heating and mass supply. We discuss a model of the spicules driven by a train of slow MHD shock waves propagating along a vertical expanding magnetic flux tube. The shocks are initiated due to compression of the tube by the increasing external pressure in the lower chromosphere. Downflow of spicular material depends on radiative cooling and other dissipative processes. 相似文献
8.
The formation of planetary systems is intimately tied to the question of the evolution of the gas and solid material in the early nebula. Current models of evolution of circumstellar disks are reviewed here with emphasis on the so-called “alpha models” in which angular momentum is transported outward by turbulent viscosity, parameterized by an dimensionless parameter α. A simple 1D model of protoplanetary disks that includes gas and embedded particles is used to introduce key questions on planetesimal formation. This model includes the aerodynamic properties of solid ice and rock grains to calculate their migration and growth. We show that the evolution of the nebula and migration and growth of its solids proceed on timescales that are generally not much longer than the timescale necessary to fully form the star-disk system from the molecular cloud. Contrary to a widely used approach, planet formation therefore can neither be studied in a static nebula nor in a nebula evolving from an arbitrary initial condition. We propose a simple approach to both account for sedimentation from the molecular cloud onto the disk, disk evolution and migration of solids. Giant planets have key roles in the history of the forming Solar System: they formed relatively early, when a significant amount of hydrogen and helium were still present in the nebula, and have a mass that is a sizable fraction of the disk mass at any given time. Their composition is also of interest because when compared to the solar composition, their enrichment in elements other than hydrogen and helium is a witness of sorting processes that occured in the protosolar nebula. We review likely scenarios capable of explaining both the presence of central dense cores in Jupiter, Saturn, Uranus and Neptune and their global composition. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
In previous publications (Keppens et al.: 2002, Astrophys. J. 569, L121; Goedbloed et al.: 2004a, Phys. Plasmas
11, 28), we have demonstrated that stationary rotation of magnetized plasma about a compact central object permits an enormous
number of different MHD instabilities, with the well-known magneto-rotational instability (Velikhov, E. P.: 1959, Soviet Phys.–JETP Lett. 36, 995; Chandrasekhar, S.: 1960, Proc. Natl. Acad. Sci. U.S.A. 46, 253; Balbus, S. A. and Hawley, J. F.: 1991, Astrophys. J. 376, 214) as just one of them. We here concentrate on the new instabilities found that are driven by transonic transitions of
the poloidal flow. A particularly promising class of instabilities, from the point of view of MHD turbulence in accretion
disks, is the class of trans-slow Alfv’en continuum modes, that occur when the poloidal flow exceeds a critical value of the slow magnetosonic speed. When this happens, virtually
every magnetic/flow surface of the disk becomes unstable with respect to highly localized modes of the continuous spectrum.
The mode structures rotate, in turn, about the rotating disk. These structures lock and become explosively unstable when the
mass of the central object is increased beyond a certain critical value. Their growth rates then become huge, of the order
of the Alfv’en transit time. These instabilities appear to have all requisite properties to facilitate accretion flows across
magnetic surfaces and jet formation. 相似文献
10.
Franca Chiuderi Drago 《Space Science Reviews》1994,70(1-2):279-282
Different models of coronal streamers are used to calculate the radio brightness temperature at the wavelengths of observation of the Nançays Radioheliograph. Calculation are performed assuming the location of the streamer both on the disk and at the limb. Their comparison with observations show that a satisfactory agreement with a particular model can be found in the shape and in the relative enhacement of the streamer with respect to the quiet Sun, although the absolute values of the computed brightness temperatures are much higher than the observed ones. 相似文献
11.
Roger A. Kopp 《Space Science Reviews》1994,70(1-2):309-316
The working group on coronal streamers convened on the first day of the 2nd SOHO Workshop, which took place in Marciana Marina, Isola d'Elba, 27 September –1 October 1993. Recent progress in streamer observational techniques and theoretical modeling was reported. The contribution of streamers to the mass and energy supply for the solar wind was discussed. Moreover, the importance of thin electric current sheets for determining both the gross dynamical properties of streamers and the fine-scale filamentary structure within streamers, was strongly emphasized. Potential advances to our understanding of these areas of coronal physics that could be made by the contingent of instruments aboard SOHO were pointed out. 相似文献
12.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case
with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial
regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and
active region compositions and the transition region composition is frequently different from the coronal composition along
the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP
O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions
and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R
⊙. 相似文献
13.
A. I. Efimov 《Space Science Reviews》1994,70(1-2):397-402
Velocity measurements of the solar wind in the region of its acceleration were carried out in 1984 with Venera Orbiters using the following specific radio sounding techniques: (i) phase and frequency correlations from two or three widely-spaced ground stations; (ii) phase and frequency correlations from two spacecraft and two widely-spaced ground stations; (iii) two station two-way coherent Doppler measurements; (iv) determination of the break frequency in power spectra of intensity fluctuations. Our results are substantially lower than those derived from direct Doppler shift measurements of transition region and lower coronal resonance lines and those from measurements applying the Doppler dimming technique. 相似文献
14.
U. Feldman 《Space Science Reviews》1998,85(1-2):227-240
Recent spectroscopic measurements from instruments on the Solar and Heliospheric Observatory (SOHO) find that the coronal composition above a polar coronal hole is nearly photospheric. However, similar SOHO observations show that in coronal plasmas above quiet equatorial regions low-FIP elements are enhanced by a factor of ≈ 4. In addition, the process of elemental settling in coronal plasmas high above the solar surface was shown to exist. Measurements by the Ulysses spacecraft, which are based on non-spectroscopic particle counting techniques, show that, with the exception of He, the elemental composition of the fast speed solar wind is similar to within a factor of 1.5 to the composition of the photosphere. In contrast, similar measurements in the slow speed wind show that elements with low first ionization potential (FIP < 10 eV) are enhanced, relative to the photosphere, by a factor of 4-5. By combining the SOHO and Ulysses results, ideas related to the origin of the slow speed solar wind are presented. Using spectroscopic measurements by the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) instrument on SOHO the photospheric abundance of He was determined as 8.5 ± 1.3% (Y = 0.248). This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
The instruments on the Spartan 201 spacecraft are an Ultraviolet Coronal Spectrometer and a White Light Coronagraph. Spartan 201 was deployed by the Space Shuttle on 11 April 1993 and observed the extended solar corona for about 40 hours. The Ultraviolet Coronal Spectrometer measured the intensity and spectral line profile of HI Ly and the intensities of OVI 103.2 and 103.7 nm. Observations were made at heliocentric heights between 1.39 and 3.5 R. Four coronal targets were observed, a helmet streamer at heliographic position angle 135°, the north and south polar coronal holes, and an active region above the west limb. Measurements of the HI Ly geocorona and the solar irradiance were also made. The instrument performed as expected. Straylight suppression, spectral focus, radiometric sensitivity and background levels all appear to be satisfactory. The uv observations are aimed at determining proton temperatures and outflow velocities of hydrogen, protons and oxygen ions. Preliminary results from the north polar coronal hole observations are discussed. 相似文献
16.
Giannina Poletto 《Space Science Reviews》1994,70(1-2):241-252
Streamers have been observed since far back in time, but our knowledge of their morphology and of their physical characteristics is still very limited. As a consequence, the present streamer picture is largely incomplete: because individual features are poorly known, their role in more general phenomena (like the evolution of the global corona or the solar wind mass and flow pattern) is also poorly known. In this presentation, the more relevant open problems in the understanding of streamers will be illustrated and it will be shown how new data acquired by SOHO may help us to reach a better understanding of these structures. 相似文献
17.
E. Antonucci 《Space Science Reviews》1994,70(1-2):149-160
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere. 相似文献
18.
We investigate numerically the dynamical evolution of a boundary driven, topologically complex low plasma. The initial state is a simple, but topologically nontrivial 3D magnetic field, and the evolution is driven by forced motions on two opposite boundaries of the computational domain. A large X-type reconnection event with a supersonic one-sided jet occurs as part of a process that brakes down the large scale topology of the initial field. An energetically steady state is reached, with a double arcade overall topology, in which the driving causes continuous creation of small scale thin current sheets at various locations in the arcade structures. 相似文献
19.
P. Veltri 《Space Science Reviews》1994,68(1-4):63-74
The possibility to perform in-situ measurements of velocity, magnetic field, density and temperature fluctuations in the Solar Wind has greatly improved our knoweledge of MHD turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics.These fluctuations on the one hand extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent non-linear energy cascade, on the other hand display, mainly in the trailing edge of high speed streams, a number of striking features: (i) a high degree of correlation between magnetic and velocity field fluctuations, (ii) a very low level of fluctuations in mass density and magnetic field intensity, (iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic field correlation tensor. More recently it has been stressed that MHD turbulence in the Solar Wind displays a clear intermittent character.The picture which emerges from the most recent analytical theories and numerical simulations is presented. In particular the observations which give us informations about the dissipation mechanism, which remains yet largely unknown, are discussed. 相似文献
20.
The profiles of the Lyα line at 1215.6 Å and of the O VI doublet at 1031.9 Å and 1037.6 Å in the extended solar corona have been analyzed vs. latitude and radial direction, performing observations with the Ultraviolet Coronagraph Spectrometer (UVCS) on board the ESA-NASA solar satellite SOHO (Solar and Heliospheric Observatory). The results show that these lines behave differently with latitude: the H I Ly α line has larger full width at half maximum (FWHM) values in the streamer region and narrower values towards the pole, while the FWHM of O VI lines has a minimum at the center of the streamer and slightly increases towards the polar regions. We briefly discuss the impact of the results on coronal heating theories. 相似文献