共查询到20条相似文献,搜索用时 15 毫秒
1.
M Oguchi K Nitta K Ohtsubo Y Tako 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):237-240
In order to determine a required plant cultivation area which can sustain human life in a closed environment, the material circulating measurement system including a Closed-type Plant Cultivation Equipment (CPCE) in which the metabolic data of plants can be accurately measured has been constructed. According to results from cultivation experiments using rice, the harvest index was 29.9% for 110 days, and the required crop area to supply food, oxygen and water for one person was calculated to be about 111m2, 36m2 and 0.9m2, respectively. 相似文献
2.
Application of crop gas exchange and transpiration data obtained with CEEF to global change problem.
Y Tako R Arai K Otsubo K Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1541-1545
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change. 相似文献
3.
K Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1505-1512
Nuclear power generation is now confronted with a very difficult situation all over the world because of the problems of radioactive waste disposal and of the accidents, which have occurred. Nuclear power generation now supplies nearly 30% of total electric power demand in Japan. Therefore it is very difficult to change quickly the construction plans of nuclear facilities already designed. A nuclear fuel reprocessing center is now under construction in Rokkasho-Mura in Aomori Prefecture. If this center starts its operation, small amounts of 14CO2 are expected to be released into the atmosphere and will enter the global cycle. The simulation experiment of 14C trace amounts which enter into ecosystems is now being planned using stable isotope 13C within CEEF (Closed Ecology Experiment Facilities). 相似文献
4.
F K Gmünder R N Suter M Kiess R Urfer A Nordau C-GCogoli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):119-127
Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 microliters. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible. 相似文献
5.
A Tani M Kiyota I Aiga K Nitta Y Tako A Ashida K Otsubo T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):181-188
Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO2 and O2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed-1 h-1 for the shiitake mushroom culture bed (volume is 1700 cm3) and 4.1 approximately 17.3 ng dm-2 h-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants. 相似文献
6.
Y Kitaya A Tani M Kiyota I Aiga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):281-284
In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem. 相似文献
7.
B Bugbee B Spanarkel S Johnson O Monje G Koerner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):257-267
The effects of elevated CO2 on plant growth are reviewed and the implications for crop yields in regenerative systems are discussed. There is considerable theoretical and experimental evidence indicating that the beneficial effects of CO2 are saturated at about 0.12% CO2 in air. However, CO2 can easily rise above 1% of the total gas in a closed system, and we have thus studied continuous exposure to CO2 levels as high as 2%. Elevating CO2 from 340 to 1200 micromoles mol-1 can increase the seed yield of wheat and rice by 30 to 40%; unfortunately, further CO2 elevation to 2500 micromoles mol-1 (0.25%) has consistently reduced yield by 25% compared to plants grown at 1200 micromoles mol-1; fortunately, there was only an additional 10% decrease in yield as the CO2 level was further elevated to 2% (20,000 micromoles mol-1). Yield increases in both rice and wheat were primarily the result of increased number of heads per m2, with minor effects on seed number per head and seed size. Yield increases were greatest in the highest photosynthetic photon flux. We used photosynthetic gas exchange to analyze CO2 effects on radiation interception, canopy quantum yield, and canopy carbon use efficiency. We were surprised to find that radiation interception during early growth was not improved by elevated CO2. As expected, CO2 increased quantum yield, but there was also a small increase in carbon use efficiency. Super-optimal CO2 levels did not reduce vegetative growth, but decreased seed set and thus yield. The reduced seed set is not visually apparent until final yield is measured. The physiological mechanism underlying CO2 toxicity is not yet known, but elevated CO2 levels (0.1 to 1% CO2) increase ethylene synthesis in some plants and ethylene is a potent inhibitor of seed set in wheat. 相似文献
8.
M Oguchi K Otsubo K Nitta A Shimada S Fujii T Koyano K Miki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):169-177
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system. 相似文献
9.
J M Klingler R L Mancinelli M R White 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(6):173-176
Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction. 相似文献
10.
I Kaneko K Eguchi-Kasai T Kosaka K Nakano A Maruhashi T Takahashi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):73-81
When the natural logarithm of the surviving fraction is plotted against the dose of radiation, curves with shoulders at relatively high survival levels are obtained after gamma-rays. The curves were practically linear in case of HMV-I and HA-1 cells irradiated by charged particle beams. These cells were derived from human malignant melanoma and Chinese hamster cells, respectively. The amount of DNA single strand breaks (ssb) by gamma-rays or nitrogen-ions (LET=530KeV/micrometers) in HMV-I cells increases linearly with increment in dose, when the ssb is detected using the alkaline elution technique. There is no close relationship between the dose-response curve of the ssb and the dose-survival curves after gamma-rays or N-ions. The amount of DNA double strand breaks (dsb) by gamma-rays increases quadratically with increment of dose, in both HMV-I cells and HA-1 cells, when the dsb is detected using the neutral elution technique. The survival fraction for HA-1 cells is slightly higher than that for HMV-I cells, at the same dose, and the amount of dsb for HA-1 cells is considerably greater than that for HMV-I cells. These results suggest that the radiosensitivities to gamma-rays in different cell lines do not correspond to the number of DNA strand breaks. The amount of both non-repairable ssb and dsb also increases quadratically with increment of dose for gamma-rays and almost linearly with increment of dose for N-ions and alpha-particles (LET=36keV/micrometers for HA-1 cells and LET=77keV/micrometers for HMV-I cells). The dose-response curves for non-repairable dsb in case of these radiations seemed to mirror image the dose-survival curves for these radiations, in both cell lines. The number of non-repairable DNA strand breaks in the two cell lines, at the same level of survival was much the same. These results show the close relationship between the induction of non-repairable DNA strand breaks and cell killing. 相似文献
11.
J D McKeehen C A Mitchell R M Wheeler B Bugbee S S Nielsen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):73-83
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS. 相似文献
12.
M M Saulmon K F Reardon W Z Sadeh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):289-292
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications. 相似文献
13.
Y Kitaya M Kiyota I Aiga K Yabuki K Nitta A Ikeda S Nakayama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):37-40
In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 micromoles/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing. 相似文献
14.
M Dobrijevic J P Parisot I Dutour 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):105-108
Photochemistry of giant planets and their satellites is characterized by numerous reactions involving a lot of chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons ... ) and gives access to the identification of the most important mechanisms in the chemical system. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C2H6 in the atmosphere of Neptune from the photodissociation of CH4 is investigated. Different pathways of dissociation of CH4 are possible from L alpha radiation. A chemical system containing 14 species and 30 reactions including these different pathways of dissociation is integrated. The main mechanism of production of C2H6 is identified and evaluated for each model of dissociation. The importance of various reaction pathways as a function of time is presented. 相似文献
15.
T I Pisman N S Pechurkin T S Mariasova L A Somova A B Sarangova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(3):383-387
A mathematical model concerning the interaction of plants and rhizospheric microorganisms on complete mineral medium and under nitrogen limitation has been constructed. The model takes into account the closeness of plants and microorganisms in terms of the matter released by the plant and consumed by the microorganisms. The effect of rhizospheric microorganisms on plant growth with normal carbon dioxide and complete mineral medium has been demonstrated. Plants interacting with microorganisms have a greater biomass than plants growing without microorganisms. Wheat growth stimulation by metabolites of rhizospheric microorganisms under laboratory conditions on artificial soil has been experimentally demonstrated (Pechurkin, 1997). Under nitrogen limitation, the biomass of plants, with or without microorganisms, is identical, and is substantially reduced as compared with the medium with standard nitrogen. 相似文献
16.
D Nna Mvondo R Navarro-Gonzalez C P McKay P Coll F Raulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):217-223
We present measurements for the production of nitrogen oxides (NO and N2O) in CO2-N2 mixtures that simulate different stages of the evolution of the atmospheres of the Earth, Venus and Mars. The nitrogen fixation rates by two different types of electrical discharges, namely lightning and coronae, were studied over a wide range in CO2 and N2 mixing ratios. Nitric oxide (NO) is formed with a maximum energy yield estimated to be ~1.3 x 10(16) molecule J-1 at 80% CO2 and ~1.3 x 10(14) molecule J-1 at 50% CO2 for lightning and coronae discharges, respectively. Nitrous oxide (N2O) is only formed by coronae discharge with a maximum energy yield estimated to be ~1.2 x 10(13) molecule J-1 at 50% CO2. The pronounced difference in NO production in lightning and coronae discharges and the lack of formation of N2O in lightning indicate that the physics and chemistry involved in nitrogen fixation differs substantially in these two forms of electric energy. 相似文献
17.
E. Crespo del Arco P. Bountoux R. L. Sani G. Hardin G. P. Extr met 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1988,8(12):281-292
Three-dimensional buoyancy driven flows in vertical cylinders are simulated with a finite difference technique. Asymmetric convective flows are studied for three values of the (length-to-radius) aspect ratio A. One result concerns the occurrence of asymmetric convection in a flat A=0.485 cylinder for Pr=6.7, near the threshold and up to 3Rac (where Rac is the critical Rayleigh number and Pr is the Prandtl number). Complex (steady and time-dependent) supercritical regimes have been simulated in cylinders of aspect ratios A=2 and A=4 for Pr=0.02 and in ranges of Ra up to 8Rac and 6Rac, respectively. The flow patterns are analysed graphically and discussed with respect to a weakly nonlinear analysis and to experiments. In a particular case, A=4 and Pr=0.02, an oscillatory motion has been obtained and some features of the flow pattern are shown during a period. 相似文献
18.
J F Bayonove J J Raffi J P Agnel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):53-57
Rice caryopsis of Cigalon variety with short grain of the LDEF mission can develop and grow as well as those of the laboratory control. Rice caryopsis of Delta variety with long grain did not develop while a small number of excised embryos can develop and grow as well as the control group. A preliminary study of the Electron Spin Resonance (ESR) spectra of Rice embryos and seeds recorded several month after the flight on flight samples and on control ones has been carried out. All these samples had the same storage time. During storage the radical concentration which usually decreases, now depends on irradiation doses and on whether or not they were delivered in presence of oxygen. The signal variations are smaller than those usually observed in the different parts of the starch. An estimation of a "gamma-equivalent-dose" can be reached. 相似文献
19.
S. Ushakova A. Tikhomirov V. Shikhov Yu. Kudenko O. Anischenko J.-B. Gros Ch. Lasseur 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day−1 m−2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop’s solution was used in the control experiments. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(12):2737-2744
The interaction of the solar wind with the Earth's magnetosphere creates a population of backstreaming ions. When a tangential discontinuity contacts the bow shock, these ions can be focused to the discontinuity region and create so-called Hot Flow Anomalies (HFAs) - diamagnetic cavities filled with hot, tenuous, and deflected plasma population. These cavities are swept downstream and can be observed in the magnetosheath. We have analyzed INTERBALL-1 and MAGION-4 observations of magnetosheath HFAs with attention to their internal structure. We have found that HFAs often consist of two parts separated by an density enhancement. The particle behaviour can differ in these two parts. We demonstrate this peculiarity and discuss its possible origin. 相似文献