共查询到20条相似文献,搜索用时 0 毫秒
1.
Radar Imaging of Mercury 总被引:1,自引:0,他引:1
John K. Harmon 《Space Science Reviews》2007,132(2-4):307-349
Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during
the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization
imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements
in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright
features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater
floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however,
regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation
by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most
of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright
ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80–125 km. Among
these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage
of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper
and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure.
These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized
brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting
finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands
on the Moon. 相似文献
2.
D. A. Brain 《Space Science Reviews》2006,126(1-4):77-112
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares
elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian
atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer
(ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks
in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived
in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated
with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment
has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is
highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars
with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data,
as well as multi-spacecraft observations. 相似文献
3.
L. Zelenyi M. Oka H. Malova M. Fujimoto D. Delcourt W. Baumjohann 《Space Science Reviews》2007,132(2-4):593-609
This paper is devoted to the problem of particle acceleration in the closest to the Sun Hermean magnetosphere. We discuss
few available observations of energetic particles in Mercury environment made by Mariner-10 in 1974–1975 during Mercury flyby’s
and by Helios in 1979 upstream of the Hermean bow shock. Typically ions are non-adiabatic in a very dynamic and compact Mercury
magnetosphere, so one may expect that particle acceleration will be very effective. However, it works perfectly for electrons,
but for ions the scale of magnetosphere is so small that it allows their acceleration only up to 100 keV. We present comparative
analysis of the efficiency of various acceleration mechanisms (inductive acceleration, acceleration by the centrifugal impulse
force, stochastic acceleration in a turbulent magnetic fields, wave–particle interactions and bow shock energization) in the
magnetospheres of the Earth and Mercury. Finally we discuss several points which need to be addressed in a future Hermean
missions. 相似文献
4.
We discuss quasi-static and dynamic models of the magnetotail response to perturbations imposed by the solar wind, focusing
particularly on the formation of thin current sheets, their structure and breakup. 相似文献
5.
G. Cremonese A. Sprague J. Warell N. Thomas L. Ksamfomality 《Space Science Reviews》2007,132(2-4):291-306
The Mariner 10 spacecraft made three flyby passes of Mercury in 1974 and 1975. It imaged a little less than half of the surface
and discovered Mercury had an intrinsic magnetic field. This paper briefly describes the surface of Mercury as seen by Mariner
10 as a backdrop to the discoveries made since then by ground-based observations and the optimistic anticipation of new discoveries
by MESSENGER and BepiColombo spacecraft that are scheduled for encounter in the next decade. 相似文献
6.
J. Wicht M. Mandea F. Takahashi U. R. Christensen M. Matsushima B. Langlais 《Space Science Reviews》2007,132(2-4):261-290
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude,
however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation
of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called
magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo
simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive
a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal
evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal
field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations
do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or
both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large
inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation
of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause
the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic
field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through
the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and
mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058,
2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields
spatial structure, its degree of axisymmetry, and its secular variation. 相似文献
7.
André Balogh Réjean Grard Sean C. Solomon Rita Schulz Yves Langevin Yasumasa Kasaba Masaki Fujimoto 《Space Science Reviews》2007,132(2-4):611-645
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive
understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational
well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner
10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late
1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury
in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in
detail. 相似文献
8.
The Mercury Dual Imaging System on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
S. Edward Hawkins III John D. Boldt Edward H. Darlington Raymond Espiritu Robert E. Gold Bruce Gotwols Matthew P. Grey Christopher D. Hash John R. Hayes Steven E. Jaskulek Charles J. Kardian Jr. Mary R. Keller Erick R. Malaret Scott L. Murchie Patricia K. Murphy Keith Peacock Louise M. Prockter R. Alan Reiter Mark S. Robinson Edward D. Schaefer Richard G. Shelton Raymond E. Sterner II Howard W. Taylor Thomas R. Watters Bruce D. Williams 《Space Science Reviews》2007,131(1-4):247-338
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin
and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC
is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color
filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled
device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and
the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward
from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel
binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at
Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission
angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor
images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct
a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips.
Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement
history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper
summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing
units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated
from MDIS data. 相似文献
9.
A. Sprague J. Warell G. Cremonese Y. Langevin J. Helbert P. Wurz I. Veselovsky S. Orsini A. Milillo 《Space Science Reviews》2007,132(2-4):399-431
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material
accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations
indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses
of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely
distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations.
Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at
different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including
microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere
that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin
on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field
and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the
analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions. 相似文献
10.
11.
Herbert I. M. Lichtenegger Helmut Lammer Yuri N. Kulikov Shahin Kazeminejad Gregorio H. Molina-Cuberos Rafael Rodrigo Bobby Kazeminejad Gottfried Kirchengast 《Space Science Reviews》2006,126(1-4):469-501
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at 相似文献
12.
William V. Boynton Ann L. Sprague Sean C. Solomon Richard D. Starr Larry G. Evans William C. Feldman Jacob I. Trombka Edgar A. Rhodes 《Space Science Reviews》2007,131(1-4):85-104
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited
to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer
(GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al,
Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction:
aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements,
with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust
and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount
of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to
water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount
of Fe present in other forms, including metal and sulfides. 相似文献
13.
The Geology of Mercury: The View Prior to the MESSENGER Mission 总被引:1,自引:0,他引:1
James W. Head Clark R. Chapman Deborah L. Domingue S. Edward Hawkins III William E. McClintock Scott L. Murchie Louise M. Prockter Mark S. Robinson Robert G. Strom Thomas R. Watters 《Space Science Reviews》2007,131(1-4):41-84
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an
exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface,
a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of
the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with
major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current
image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik
in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor
(∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening
due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because
of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury
is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping
of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and
crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that
provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat
loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the
global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history
and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to
disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry;
(6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations
in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those
on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be
further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships
of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century
since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route
to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth
of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury
using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data. 相似文献
14.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
15.
Rosemary Killen Gabrielle Cremonese Helmut Lammer Stefano Orsini Andrew E. Potter Ann L. Sprague Peter Wurz Maxim L. Khodachenko Herbert I. M. Lichtenegger Anna Milillo Alessandro Mura 《Space Science Reviews》2007,132(2-4):433-509
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials.
If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric
study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been
believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et
al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization,
photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal
and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed.
As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude.
Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are
never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is
brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not
only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering.
They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms
through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects
regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material
and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering
effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes
as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but
also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy,
T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative
rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact
of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter. 相似文献
16.
Alexeev Igor I. Belenkaya Elena S. Bobrovnikov Sergey Yu. Kalegaev Vladimir V. 《Space Science Reviews》2003,107(1-2):7-26
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
17.
Deborah L. Domingue Patrick L. Koehn Rosemary M. Killen Ann L. Sprague Menelaos Sarantos Andrew F. Cheng Eric T. Bradley William E. McClintock 《Space Science Reviews》2007,131(1-4):161-186
The existence of a surface-bounded exosphere about Mercury was discovered through the Mariner 10 airglow and occultation experiments.
Most of what is currently known or understood about this very tenuous atmosphere, however, comes from ground-based telescopic
observations. It is likely that only a subset of the exospheric constituents have been identified, but their variable abundance
with location, time, and space weather events demonstrate that Mercury’s exosphere is part of a complex system involving the
planet’s surface, magnetosphere, and the surrounding space environment (the solar wind and interplanetary magnetic field).
This paper reviews the current hypotheses and supporting observations concerning the processes that form and support the exosphere.
The outstanding questions and issues regarding Mercury’s exosphere stem from our current lack of knowledge concerning the
surface composition, the magnetic field behavior within the local space environment, and the character of the local space
environment. 相似文献
18.
Nonthermal magnetospheric radio emissions provide the radio signatures of solar-terrestrial connection and may be used for
space weather forecasting. A three-wave model of auroral radio emissions at the fundamental plasma frequency was proposed
by Chian et al. (1994) involving resonant interactions of Langmuir, whistler and Alfvén waves. Chaos can appear in the nonlinear evolution
of this three-wave process in the magnetosphere. We discuss two types of intermittency in radio signals driven by temporal
chaos: the type-I Pomeau-Manneville intermittency and the interior crisis-induced intermittency. Examples of time series for
both types of intermittency are presented.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
19.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists
of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet
and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating,
Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle
ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure
altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability
and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph
equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array
(300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface
reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical
composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or
smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed
design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital
operations around Mercury. 相似文献
20.
Leonid Ksanfomality John Harmon Elena Petrova Nicolas Thomas Igor Veselovsky Johan Warell 《Space Science Reviews》2007,132(2-4):351-397
New planned orbiter missions to Mercury have prompted renewed efforts to investigate the surface of Mercury via ground-based
remote sensing. While the highest resolution instrumentation optical telescopes (e.g., HST) cannot be used at angular distances
close to the Sun, advanced ground-based astronomical techniques and modern analytical and software can be used to obtain the
resolved images of the poorly known or unknown part of Mercury. Our observations of the planet presented here were carried
out in many observatories at morning and evening elongation of the planet. Stacking the acquired images of the hemisphere
of Mercury, which was not observed by the Mariner 10 mission (1974–1975), is presented. Huge features found there change radically
the existing hypothesis that the “continental” character of a surface may be attributed to the whole planet. We present the
observational method, the data analysis approach, the resulting images and obtained properties of the Mercury’s surface. 相似文献