首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
辅助动力装置系统进气风门位置控制子系统用于地面和空中控制辅助动力装置进气风门的打开和关闭,通常由控制器,作动机构(电动作动器和连杆机构)组成。辅助动力装置系统进气风门位置控制子系统的设计是辅助动力装置控制系统设计的一部分,和辅助动力装置进气风门设计、进气风门气动载荷计算分析及辅助动力装置进气道设计同步进行,相互影响。对某型飞机的辅助动力装置系统进气风门位置控制设计方案进行了介绍,该风门位置控制采用单独的风门控制器,降低了辅助动力装置FADEC(Full Authority Digital Electrical Controller,全权限数字电子控制器,简称FADEC)软硬件设计复杂度,简化了接口设计;并且设计了一种新型辅助动力装置系统进气风门作动机构,该作动机构安装/拆卸方便,可达性好;具有力矩放大功能,且该机构可调节,能输出不同大小的力矩。该进气风门位置控制子系统经过型号验证,对后续型号研制具有较强的指导性。  相似文献   

2.
The electro-hydrostatic actuator(EHA) used in more electric aircraft(MEA) has been extensively studied due to its advantages of high reliability and high integration. However, this high integration results in a small heat dissipation area, leading to high-temperature problems. Generally,to reduce the temperature, a wet cooling method of using the pump leakage oil to cool the motor is adopted, which can also increase the difficulty of accurately predicting the system temperature in the early desi...  相似文献   

3.
The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply together with hydraulic pipes, an EHA's reliability and efficiency are greatly improved but its frequency width and stiffness decreased. To overcome the drawback, this article proposes a novel structure of EHA associated with a power regulator. Composed of a high-pressure accumulator and a proportional valve, it can store and harness the hydraulic power flexibly according to the changing control requirements. The concept of transferred volume is put forward to estimate the capability of the power regulator. The actuator output position can be kept fixed with a hydraulic lock. The compounded control is specially developed to ensure the actuator system to operate in a correct manner. The simulation results indicate that the new-brand actuator results in efficient expanding of the system frequency width with an optimal power supply.  相似文献   

4.
《中国航空学报》2016,(5):1313-1325
This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.  相似文献   

5.
在多电飞机应用环境中,由于电静液作动器(Electro Hydrostatic Actuator,以下简称EHA)系统本身的强非线性与承载交变动载荷的不确定性,简单PID控制无法达到理想控制效果。提出了滑模 PID复合控制,电机电流环和转速环构成控制系统内环,以PI控制器实现电机调速;作动筒位置环为外环,以滑模控制提升系统的快速性和鲁棒性。建立了EHA数学模型,并设计了滑模控制器结构。仿真结果表明,滑模 PID复合控制方法能有效地消除超调和减小跟随误差,实现对EHA位置的精确控制。  相似文献   

6.
High power factor AC/DC/AC converter with random PWM   总被引:1,自引:0,他引:1  
A three-phase AC/DC/AC converter is presented with a power factor preregulator to improve the power quality in the input side and a pseudorandom noise generator to reduce the emitted acoustic noise and the mechanical vibration for an induction motor drive. The space vector modulation with hysteresis current control for a voltage source rectifier is adopted to simplify the hardware circuit. A control scheme is presented to drive the supply current following the reference current. The amplitude of reference current for the pulsewidth modulation (PWM) rectifier is derived from the DC bus voltage regulator and the estimated output power. Random switching frequency technique for a three-phase PWM inverter system to reduce the annoying tonal noise and resonant vibration from an induction motor is described. By randomly varying the instantaneous PWM switching frequency from one cycle to the next, the frequency distribution of harmonics is spread in a wide frequency range. The major advantage for using such a strategy is the nonrepetitive output spectral characteristic that results in reduction of torque pulsations in motor drive systems. The nearly unity power factor at the three-phase rectifier and the absence of acoustic noise concentrated at the specific tones which is usually present with conventional sinusoidal modulation are verified by the experimental tests  相似文献   

7.
《中国航空学报》2016,(3):789-798
This paper presents an integrated fuzzy controller design approach to synchronize a dis-similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu-ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi-tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance.  相似文献   

8.
当前大功率的航空发电机开始采用360~800Hz的变频输出方式,在航空变频电源的直接供电下,感应电机的性能受到频率变化最大的影响是在高频时起动转矩太低。针对笼型感应电机,采用解析计算的方法对矩形转子槽尺寸进行优化,在不改变稳态性能的条件下获得最大起动转矩。深槽尺寸的变化将影响集肤效应系数和槽漏感2个方面,二者对起动转矩的作用相反。通过综合2个方面的因素,建立起包含槽型尺寸和频率的动态转子参数模型,并采用该动态转子参数对传统的转矩公式进行调整,进而获得关于转子槽尺寸的起动力矩解析式,同时基于该解析式实现对起动力矩的优化。采用该解析方法对7.5kW感应电机进行深槽转子优化,并对航空变频电源驱动时的起动特性进行了仿真和样机实验,验证了该方法在矩形转子槽优化设计中的有效性。  相似文献   

9.
多电飞机作动系统的体系结构优化(英文)   总被引:3,自引:0,他引:3  
多电技术的深入发展使得飞机上可选择的功率源和作动器种类越来越多,这导致在机载作动系统体系结构优化设计过程中出现了不同功率源和作动器组合的极端复杂性,传统的"试凑"法已无法完成设计任务。首先介绍了多电飞机飞控作动系统(Flight Control Actuation System,FCAS)的组成,计算了其可能的体系结构数量;其次提出了FCAS体系结构在安全性、重量和效率方面的评价指标,计算了全机各舵面均采用同类作动器时的评价指标值;最后对比分析了现有的各种多目标优化算法,采用遗传算法给出了多电飞机FCAS体系结构的多目标优化设计结果。对比传统的只采用阀控液压伺服作动器的作动系统体系结构,优化后的体系结构可以在满足安全可靠性要求的前提下使系统的重量减轻6%左右,效率提高30%左右。  相似文献   

10.
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.  相似文献   

11.
Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 k Pa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles(from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.  相似文献   

12.
Electrohydrostatic actuator (EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test.  相似文献   

13.
永磁容错电机最优转矩控制策略实验   总被引:3,自引:0,他引:3  
 永磁容错(FTPM)电机不仅具有容错和故障隔离能力,还继承了一般永磁电机功率密度大、转矩脉动小的优点,故在航空用电力作动系统中得到大力发展。最优转矩控制(OTC)算法可以实现电机在正常和故障时(一相断路或短路)输出电磁转矩脉动最小化。本文设计了750 W六相十极FTPM电机最优转矩控制系统平台,提出了两种简单实用的绕组故障诊断方法,对最优转矩控制算法进行了实验研究。实验结果表明,该算法能够实现故障前后转矩转速性能基本不变,且转矩脉动均小于20%,故障时动态响应快。  相似文献   

14.
Electromechanical Actuation Technology for the All-Electric Aircraft   总被引:1,自引:0,他引:1  
Electromechanical actuation is a critical element that must be developed and verified to make the all-electric aircraft a viable concept. For several years the Flight Control Division of the Air Force Wright Aeronautical Laboratories has sponsored activities to demonstrate the credibility of electromechanical actuation systems (EMAS) for primary flight control actuation functions. The foundation for these EMAS activities and several electromechanical actuation development programs are described here. One involves the design, fabrication, and laboratory test of a rotary, hingeline electromechanical actuator. Another involves the development and flight test demonstration of a linear electromechanical actuator for controlling an aileron of a C-141 aircraft. A third involves the design and development of a linear electromechanical actuator for missiles having severe performance, temperature, and volumetric requirements. In addition, a brief summary of the results from two aircraft actuation trade studies compare the baseline (conventional) hydraulic flight control system with an all-electric airplane concept including quantitative comparisons of weight, reliability and maintainability, and life cycle costs.  相似文献   

15.
等离子体流动控制作为一种新概念主动流动控制技术,其物理作用依据之一是“动力效应”。体积力作为表征“动力效应”的重要参数,对研究等离子体流动控制的原理具有重要意义。介绍了实验原理及系统的基本组成,对等离子体气动激励体积力进行了实验测量。结果表明:体积力的大小在mN量级;固定激励频率,激励电压增大时,体积力增大,且线性关系非常明显;固定激励电压,体积力受激励频率的影响不大。  相似文献   

16.
In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control sur-faces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings. This paper describes the development and appli-cation of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators dis-posed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flex-ible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition. The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demon-strated experimentally through bench and wind tunnel tests of the morphing wing model.  相似文献   

17.
介绍了一种采用电动静液作动器(EHA)代替原有液压作动机构的飞机多轮系防滑刹车系统,在重点分析EHA的系统组成原理和工作特性的基础上.建立了EHA及多轮系飞机刹车系统的数学模型,采用Matlab/simulink对其进行仿真.仿真结果表明:所建立的模型基本正确,结果与真实刹车基本吻合;采用EHA代替液压系统能极大改善飞机刹车性能.  相似文献   

18.
刘颖  闫晓军 《航空动力学报》2010,25(9):2023-2029
利用形状记忆合金(SMA)的记忆特性设计了一种低转速,可连续旋转的电机;利用Liang-Rog-er本构模型进行了SMA-弹簧的旋转位移驱动器的设计以及电机扭矩和转速的设计;完成了SMA电机的机械结构设计;完成了控制规律设计;进行了性能试验.研究结果表明,在试验温度27℃下,用6 V恒压电源驱动的SMA电机实现了连续旋转,转速为0.03 rad/min.SMA电机转速低,扭矩大,功率密度高,可连续旋转,有很大的工程应用潜力.   相似文献   

19.
飞机全电刹车系统设计与分析   总被引:5,自引:0,他引:5  
飞机全电刹车与传统液压刹车的主要不同在于机电作动机构代替了原来的液压活塞机构,且具有带刹车力矩反馈的特点。论文分析了全电刹车系统机电作动器的结构和工作原理,建立系统整体数学模型;对机轮速度和刹车力矩两个反馈信号,分别采用PBM(压力偏调)和PID控制,仿真结果基本符合要求,体现了全电刹车系统的优越性。  相似文献   

20.
在未来飞机多/全电化和机电综合管理的发展趋势下,舱门作动器逐渐由机电作动取代了传统的液压、机械作动。针对目前民用飞机舱门分散式独立控制杂、乱、散的局面,提出一种用于电作动舱门的集中式控制方案。对该集中式控制方案下如何实现电机的伺服控制、舱门的并行控制以及接近传感器感应距离值的修改进行设计,并搭建舱门作动系统模拟装置及电...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号