首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of impulse radar to distinguish between areas of good bridge deck and areas which suffer from one or more different forms of deterioration, including delamination, scaling, and debonding, is reported. The radar signal is also used to measure the thickness of asphalt and concrete cover over reinforcement. These quantities are important in determining the amount of material to be removed when resurfacing a bridge deck. The calibration procedure and interpretation of radar waveforms are discussed in detail  相似文献   

2.
Golay's complementary pairing has been a method to increase the utility of binary sequences, because of the temporal sidelobe suppression in the autocorrelation vector summation. Complementary sets of Tseng and Liu and of Hollis exhibit the same effect when several autocorrelations are combined. These complementary pairs and sets of sequences can be extended into long complementary chains by a simple transformation. This transformation is extended here to all pulse compression waveforms. By this method, even though analog complementary sequences cannot be formed, a new class of waveforms, called subcomplementary waveforms, can be formed. Following these rules, repetition of waveforms such as linear frequency modulation (LFM) or linear stepped frequency modulation (LSFM) in a prescribed manner is possible without creating autocorrelation grating lobes or repetitive sidelobes. This method is equally applicable to all analog or digital pulse compression waveforms.  相似文献   

3.
Acquisition in a communication receiver is the operation of determining the arrival time of a transmitted periodic timing marker. This is generally accomplished by sending a known acquisition waveform to aid in the arrival time measurement. Certain classes of waveforms are called rapid acquisition waveforms and are advantageous for reducing the time to acquire when sequential methods are used. A multiple-access acquisition environment occurs when a multiplicity of transmitter-receivers are attempting to each individually perform an acquisition operation, each pair interfering with all others. In this paper, a study is made of the interference effects when rapid acquisition techniques are used in a multiple-access environment. The prime object is to determine the manner in which the actual acquisition waveform structure effects the overall system performance. When interference variance is used as a criterion, it is shown that rapid acquisition waveforms made up of component waveforms having disjoint, flat, wideband spectra produce minimal interference. The result suggests the use of coded tone acquisition waveforms. The results have primary application to ranging, surveillance, or navigation operations performed in a many-user situation.  相似文献   

4.
High power IGBTs have been widely used for medium power inverters up to 200 kVA. Their driver circuits often require multiple-output, isolated power supplies. This paper presents a simple flyback power supply especially designed for the driver boards of three-phase IGBT inverters. The detailed circuit diagrams and typical waveforms are reported. Certain performance data are given. The power supplies have been used in 100 kVA inverters for an electric vehicle drive and for a wind turbine inverter  相似文献   

5.
Novel waveforms are described that have low sidelobes when individual or multiple waveforms are approximately processed. They are related to orthogonal matrices that may be associated with complementary sequences and also with periodic waveforms having autocorrelation functions with constant zero-amplitude sidelobes. Also described are sets of sequences whose cross-correlation functions sum to zero everywhere. A potential application is the elimination of ambiguous range stationary clutter  相似文献   

6.
Since no practical method is available for synthesizing radar waveforms, a sizable effort has been directed into studies of the matched-filter response, or ambiguity function, of many waveforms. In this paper, we investigate the class of FM signals whose instantaneous frequency varies in a zigzag pattern. The waveforms thus consist of linear FM segments and are relatively easy to generate and process. The paper discusses the relation between the characteristics of the waveform and the features of the associated ambiguity function. The effects studied include those of signal repetition, changes in the FM slope, phase-shift and frequency-shift coding, and staggering of frequency step and segment duration. Ambiguity functions of interesting waveforms illustrate the general results. These ambiguity functions are computer-plotted projections of the three-dimensional surface above the delay-Doppler plane.  相似文献   

7.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

8.
In active sonar systems, proper selection of the transmitted waveform is critical for target detection and parameter estimation, especially with the existence of clutter (reverberation). Two commonly used waveforms (constant frequency (CF) and linear frequency modulated (LFM)) are studied. Their characteristics are complementary both with respect to their accuracies and their sensitivity to the blind zero-Doppler ridge. Several fusion schemes of the two kinds of waveforms are explored and fusion results are studied both analytically and from simulation. It is concluded that fusion of the information of different waveforms can be not only more robust, but in some cases outright preferable, in term of detection probability and estimation accuracy.  相似文献   

9.
Digitally coded radar waveforms can be used to obtain large time-bandwidth products (pulse compression ratios). It is demonstrated that periodic radar waveforms with zero sidelobes or almost zero sidelobes can be defined. A perfect periodic code is a periodic code whose autocorrelation function has zero sidelobes and whose amplitude is uniform (maximum power efficiency=1). An asymptotically perfect periodic code has the property that as the number of elements in the code goes to infinity the autocorrelation function of the code has zero sidelobes and its power efficiency is one. The authors introduce a class of radar waveforms that are either perfect or asymptotically perfect codes. These are called reciprocal codes because they can be derived through a linear transformation of known codes. The aperiodic performance of the reciprocal code is examined  相似文献   

10.
焊接电弧波形和图像的同步采集与再现   总被引:2,自引:0,他引:2  
进行了焊接电弧高速摄像图像和信号波形的同步采集和再现研究,给出了电弧图像和波形再现具体实现技术,并利用该技术成功地进行了电弧光谱信息检测熔滴过渡过程、二氧化碳短路过渡过程和变极性MIG焊电弧行为的研究。  相似文献   

11.
随着射频综合技术的发展,各射频功能之间的耦合性越来越高,对其兼容管理的需求越来越大。本 文基于某型综合射频系统项目,针对L 波段通用波形的兼容管理开展了技术论证和研究。结果表明,该射频兼 容管理措施可以有效保证L 波段导航监视功能波形正常工作。  相似文献   

12.
Transmit Beamforming for MIMO Radar Systems using Signal Cross-Correlation   总被引:2,自引:0,他引:2  
Proposed next-generation radar systems will have multiple transmit apertures with complete flexibility in the choice of the signals transmitted at each aperture. Here we propose the use of multiple signals with arbitrary cross-correlation matrix R, and show that R can be chosen to achieve or approximate a desired spatial transmit beampattern. Two specific problems are addressed. The first is the constrained optimization problem of finding the value of R which causes the true transmit beampattern to be close in some sense to a desired beampattern. This is approached using convex optimization techniques. The second is the problem of designing multiple constant-modulus waveforms with given cross-correlation R. The use of coded binary phase shift keyed (BPSK) waveforms is considered. A method for finding the code sequences based on random signaling with a structured correlation matrix is proposed. It is also shown that by restricting the class of admissible waveforms one reduces the set of possible signal correlation matrices.  相似文献   

13.
The problem of designing finite-pulse-train radar signals and receivers to maximize the detectability of targets masked by thermal noise and clutter returns is considered in this paper. A practical constraint is introduced: the amplitude of each subpulse in the transmit waveform is taken to be fixed. The need for such a constraint is dictated in most radar applications, because the transmitter is most efficiently utilized by saturating its amplifying tube. An algorithm for generating optimal waveforms subject to this new constraint is presented, and the performance of the resulting waveforms is compared with those obtained using existing optimization techniques.  相似文献   

14.
On the Ambiguity Function of Random Binary-Phase-Coded Waveforms   总被引:1,自引:0,他引:1  
The ambiguity function of truly random binary-phase-coded waveforms, as an approximation to those waveforms commonly employed in binary-modulated pseudonoise systems/encoded radar systems, is investigated. In a statistical sense, the ambiguity function is analytically derived in which the normally used deterministic cross-correlation process is replaced by its ensemble average. Various Doppler filter responses are presented and discussed. The results are compared with those obtained by transmitting an aperiodic maximum length pseudorandom sequence. It is shown that the ambiguity function of the latter case is closely represented by the ensemble-average response of the truly random binary signal.  相似文献   

15.
Bandpass waveforms which have envelopes which are insensitive to this velocity-induced time dilation can be efficiently processed by narrowband receivers in which envelope correlation is fixed and Doppler tested using fast Fourier transform (FFT) processing. The peak level of the waveform ambiguity function (AF) can be used to gauge the distortion of the waveform induced by dilation. The degree of AF attenuation is shown to be proportional to the dilation parameter or velocity, waveform traveling wave (TW) product, and a sensitivity parameter which depends on the envelope function utilized. Classes of symmetric, constrained bandwidth, phase modulated envelope functions which are minimally dilation sensitive (Doppler tolerant) are derived. When the resulting waveforms are used with a simple correlation receiver structure and the echo data is derived from slowly fluctuating point scattering in white Gaussian noise, the receiver becomes an uncoupled joint estimator of delay and dilation (Doppler). In the case of the bandpass waveforms, only odd symmetry of the phase modulation (PM) yields an uncoupled estimator  相似文献   

16.
To cancel clutter, both medium-PRF waveforms which are ambiguous in both range and Doppler and high-PRF waveforms which are ambiguous in range but unambiguous in ambiguities, a previous paper has shown that superior results for a single target can be achieved by using a clustering algorithm. Here, the problem of multiple targets is considered. A maximum likelihood (ML) technique which incorporates the clustering algorithm is developed for the multiple target problem. Simulation results show that four targets which have the same speed but are at different ranges can be resolved by using a medium-PRF waveform and employing the ML resolution technique  相似文献   

17.
A frequent compromise in the design of long-range search radars has to be made between the maximum unambiguous detection range and the achievable coherent clutter rejection performance. A new class of waveforms is introduced which offers the designer a previously unavailable flexibility in arriving at radar designs with improved clutter rejection without seriously affecting the maximum unambiguous search range. The key to these new waveforms is the recognition that a class of useful N-pulse, nonrecursive, moving target indicator (MTI) canceler designs exists which only requires the radar to transmit a total of N -1 (nonuniformly spaced) pulses.  相似文献   

18.
The dominant complex natural resonances of radar targets are obtained via Prony's method applied to calculated and measured back-scattered ramp response waveforms. Subject targets are spheres, simple wire models of straight and swept wing aircraft, and realistic models of modern fighter aircraft. It is demonstrated that when the backscattered ramp response waveforms are obtained via Fourier synthesis of limited spectral range harmonic scattering data, some resonance locations at variance with those obtained from reaction integral equation search procedures are obtained. It is also shown, however, that the Prony deduced resonances can be used successfully in predictor-correlator target discrimination.  相似文献   

19.
The radar use of coherent burst waveforms to obtain clutter suppression is summarized and problems arising from the high power implementation of such waveforms are discussed. These problems arise from the nonlinear nature of the typical high power radar transmitter and result in loss of subpulse-to-subpulse amplitude and phase accuracies, causing clutter suppression degradation. adaptive control loop used to measure transmission errors and provide continuous updating to minimize such errors is proposed. Residual transmission errors resulting via use of the control loop are calculated and shown to have an insignificant effect upon the clutter suppression properties of the coherent waveform. Experimental verification of control loop performance is presented.  相似文献   

20.
Radar measurement and resolution performance, as well as target detection in clutter, depend largely on the transmitted waveform. This explains the sizable effort that has gone into studies of radar waveforms, including attempts at the synthesis of optimum waveforms. This paper shows that, despite the unlimited variety of radar signals, waveform selection is a straightforward process. There are only four classes of waveforms, each with distinct resolution properties. When the target environment is analyzed for a particular application, it is rather evident which of these classes will fit the situation best. Choice of the specific waveform within the selected class then is merely a matter of practical implementation. Although the facts used in developing the unified theory of this paper are not new, it is demonstrated that these facts can be combined into an extremely simple theory of waveform design. Much of today's work is guided by past approaches to a particular problem, and when a design is completed there may be a question as to how close to the optimum it is. The theory presented here permits a systematic approach to waveform selection, with the important benefit that the designer knows exactly where and how much he may have deviated from the best design, and why this was done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号