首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
转速优化旋翼的桨叶气动外形参数优化设计   总被引:1,自引:0,他引:1  
为了获得转速优化旋翼桨叶的最优气动外形,采用自由尾迹方法计算旋翼入流,以叶素积分法计算桨叶气动力,建立了旋翼气动分析模型,为了保证计算精度及效率,旋翼配平计算采用了二次配平方法。首先分析了不同桨叶气动外形参数对旋翼性能的影响,再利用遗传算法,以悬停效率和前飞需用功率为目标,对转速优化旋翼桨叶的气动外形进行优化设计,得出了转速优化旋翼桨叶的最优气动外形方案。在最优方案的基础上,采用区间因子法分析桨叶外形参数变化对旋翼效率影响的敏感度,根据敏感度值验证了方案的最优性。最后根据设计的最优桨叶气动外形方案,研制了桨叶试验模型,进行了风洞吹风试验,试验结果表明最优桨叶气动外形能使转速优化旋翼的悬停与前飞性能指标达到理论预期值,从而验证了转速优化旋翼桨叶最优气动外形设计的有效性。  相似文献   

2.
改进型CLOR桨尖旋翼气动特性试验研究及数值分析   总被引:2,自引:0,他引:2  
 通过风洞试验及数值模拟对具有改进型CLOR(CLOR-Ⅱ)桨尖的旋翼悬停和前飞状态气动特性开展研究。在CLOR桨尖旋翼试验及数值分析的基础上,考虑旋翼非定常流场特点,兼顾旋翼悬停和前飞气动性能,对旋翼桨叶的气动外形进行了改进,主要包括采用多种翼型优化配置以综合改善旋翼前行侧压缩性及后行侧桨叶失速特性,并考虑旋翼前飞状态对其桨叶动力学特性的需求,重新设计了桨尖前后缘的外形。在风洞中分别对3种旋翼进行多种状态条件下的试验研究,为从流动细节上获得不同桨尖旋翼的气动特性差别,采用计算流体力学(CFD)方法对试验状态进行了数值模拟对比。对更高转速状态进行模拟,结果表明相对于其他两种旋翼,CLOR-Ⅱ桨尖旋翼在改善跨声速特性和提高失速迎角等方面具有明显优势,而且综合提高了旋翼悬停和前飞气动性能。  相似文献   

3.
变转速旋翼气动特性分析及试验研究   总被引:4,自引:0,他引:4  
直升机旋翼以固定不变的转速工作,仅能使有限状态的旋翼效率达到最优,而通过旋翼转速的变化,可以实现不同飞行状态下的旋翼效率最优.为了研究不同旋翼转速时的旋翼气动特性,首先建立了适合旋翼在低转速飞行情况下的气动特性分析模型,该模型包含了Leishman-Beddoes非定常动态失速模型与适合于低马赫数(Ma<0.3)分析的Sheng失速修正模型;其次,在低速风洞2.5m旋翼模型试验台上试验研究了模型旋翼的悬停效率及前飞需用功率与旋翼转速之间的关系.试验与计算结果的对比表明:所建立的气动分析模型能够准确地计算旋翼在低转速情况下的气动特性;通过优化旋翼转速,增大了桨叶剖面迎角,提高了桨叶剖面的升阻比;并且当旋翼以最优转速旋转时,模型旋翼的悬停效率最大可以提高32%,前飞需用功率最大可以降低22%.  相似文献   

4.
开展悬停状态下的具有CLOR桨尖旋翼气动噪声试验研究.为进行噪声特性对比,共设计完成三副模型旋翼,分别为参考的矩形桨叶、常后掠桨尖的桨叶以及具有CLOR桨尖气动外形的桨叶.在外场环境下,进行这三副模型旋翼在不同转速、不同桨叶安装角条件下及不同观测点上的旋翼气动噪声测量实验,测量包括声压级大小、声压时间历程及声压级频谱等.根据试验结果,对比分析具有CLOR特型桨尖旋翼与矩形桨尖以及常后掠桨尖旋翼的悬停气动噪声特性,并借助于CFD方法,以模拟桨叶上的气动载荷分布特性,得出关于非常规气动外形桨尖对旋翼气动噪声特性的影响规律,并初步体现了CLOR桨尖旋翼具有良好的噪声特性.  相似文献   

5.
倾转旋翼气动优化设计   总被引:4,自引:0,他引:4  
倾转旋翼的气动外形设计需要对其在直升机模式和飞机模式下的不同要求进行综合考虑,对其气动外形相关参数进行优化以使倾转旋翼同时具有较高的悬停效率和巡航效率。本文基于自由尾迹分析方法建立了倾转旋翼的气动特性分析模型,以悬停和巡航效率为目标函数,以桨叶弦长分布、预扭角分布、厚度分布及翼型分布位置和旋翼转速为设计变量,以旋翼功率和桨叶重量为约束,提出了倾转旋翼气动多目标协同优化策略,对桨叶气动外形进行了优化设计,优化后的旋翼具有更优的气动性能,表明所提出的优化方法是可行的。  相似文献   

6.
新型桨尖旋翼悬停气动性能试验及数值研究   总被引:3,自引:1,他引:2  
招启军  徐国华 《航空学报》2009,30(3):422-429
通过旋翼台试验和数值模拟方法对具有China Laboratory of Rotorcraft(CLOR)桨尖旋翼的悬停气动性能进行研究。为进行对比研究,共设计完成3副模型旋翼,分别为参考的矩形桨叶、常后掠桨尖的桨叶以及具有CLOR桨尖气动外形的桨叶。在模型旋翼台上进行这3副模型旋翼在不同转速、不同桨叶安装角条件下的旋翼拉力和扭矩测量;数值计算是采用一个基于Narier-Stokes方程/自由尾迹分析/全位势方程的旋翼流场求解的混合计算流体力学(CFD)方法进行的,计算结果与试验结果显示出较好的一致性。在此基础上,数值模拟了在旋翼试验台上很难开展的高速旋转试验状态。最后,根据试验和数值结果,对比分析具有CLOR新型桨尖旋翼与矩形桨尖以及常后掠桨尖旋翼的悬停气动性能,得出关于非常规气动外形桨尖对旋翼气动特性的影响机理,初步体现了CLOR桨尖旋翼具有良好的悬停性能。  相似文献   

7.
基于非惯性系的悬停状态旋翼CFD/CSD耦合气动分析   总被引:1,自引:0,他引:1  
旨在提高先进旋翼气动特性的分析精度,在旋翼高精度CFD分析中耦合气动弹性效应,取代传统方法中的刚性桨叶假设,并考虑悬停状态旋翼流场准定常的特性,在非惯性坐标系下建立了一套适合于悬停状态旋翼气动特性计算的CFD/CSD耦合分析方法。旋翼气动载荷通过求解三维Navier-Stokes方程求得,空间离散及通量计算采用Jameson中心格式,时间方向则选用五步Runge-Kutta迭代求解,湍流模型采用B-L模型;基于Hamilton原理建立了描述旋翼弹性运动的非线性微分方程,针对旋翼悬停状态的工作特点,采用Raphson迭代方法求解获得旋翼桨叶的弹性变形量。在CFD/CSD耦合计算中,旋翼桨叶交接面载荷及变形信息通过CFD与CSD模块进行传递,同时为提高桨叶弹性变形后贴体网格生成的效率和质量,采用基于网格点坐标转换的网格变形方法。在CFD和CSD程序分别验证基础上,采用建立的旋翼CFD/CSD耦合分析方法计算了先进的UH-60A直升机旋翼的表面压强及气动载荷。计算结果表明,与刚性旋翼CFD模拟结果比较,本文建立的CFD/CSD耦合分析模型可以更准确地预估旋翼气动载荷和性能。  相似文献   

8.
直升机旋翼流场特性PIV试验分析   总被引:3,自引:0,他引:3  
基于PIV技术对悬停和前飞状态的模型旋翼流场进行了试验研究,对比分析了不同前飞速度、总距、转速、方位等条件下的旋翼速度场和桨尖涡运动,获得了在悬停和前飞条件下旋翼流动特性,为旋翼非定常流动机理研究和桨叶气动设计提供试验支持.  相似文献   

9.
本文通过悬停状态地面效应对旋翼和机身气动特性影响的研究,探索它们之间内在机理,为旋翼性能、操纵性和稳定性提供悬停试验及分析结果。通过对试验与理论计算结果的分析,给出了模型旋翼在悬停状态下,旋翼气动特性随地面高度变化的现象,利用实测桨叶表面压力的方法进一步验证地效情况下旋翼功率随拉力变化的规律。  相似文献   

10.
直升机旋翼的气动特性对总距操纵输入的动态响应具有复杂的非定常特性。文中结合尾迹模型、PC2B算法、桨叶气动模型、挥舞动力学模型、非定常翼型模型和旋翼平衡模型,建立了一个时间精确旋翼自由尾迹和气动特性分析方法。利用该方法,首先,计算了前飞时旋翼入流分布,以及悬停状态桨叶总距增加时拉力系数的变化,通过计算值与实验值的对比,验证了方法的有效性;然后,利用该方法对模型旋翼在悬停和前飞状态桨叶总距阶跃突增时的拉力系数、俯仰力矩系数、滚转力矩系数和挥舞锥度角变化的时间历程进行了计算分析,得出了一些新的结论。  相似文献   

11.
直升机旋翼对尾桨非定常气动载荷的影响   总被引:2,自引:0,他引:2  
谭剑锋 《航空学报》2015,36(10):3228-3240
悬停和侧滑状态的直升机主旋翼桨尖涡将穿透尾桨桨尖平面,由此导致尾桨非定常气动载荷发生明显变化。为更准确地模拟由主旋翼/尾桨干扰产生的尾桨非定常气动载荷变化,通过在面元压力项中增加由旋翼桨尖涡诱导的时变项,体现旋翼桨尖涡速度和几何时变对桨叶非定常压力的影响,同时采用涡面镜像法修正涡粒子法的黏性项,确保桨叶附近区域旋翼涡量守恒,建立旋翼尾迹对尾桨叶的非定常气动干扰模型,并耦合面元/黏性涡粒子法,构建直升机主旋翼/尾桨干扰下的尾桨非定常气动载荷分析方法。通过计算AH-1G旋翼桨叶非定常气动载荷特性,并与实验测量值、计算流体力学(CFD)计算结果对比,验证本文非定常气动干扰模型的有效性。随后基于NASA ROBIN(Rotor Body Interaction)模型分析悬停、侧风和60°右侧滑状态主旋翼对尾桨非定常气动载荷的影响,分析表明主旋翼尾迹对尾桨非定常气动载荷影响显著。悬停状态的主旋翼/尾桨干扰导致尾桨拉力平均值下降、非定常气动载荷显著增加;左侧风状态,主旋翼/尾桨干扰削弱尾桨"涡环"程度,显著增加尾桨拉力和非定常气动载荷;60°右侧滑状态,主旋翼/尾桨干扰导致尾桨拉力损失最大,且在低速侧滑状态出现尾桨拉力"迅速恢复"现象,尾桨非定常气动载荷幅值迅速增加。  相似文献   

12.
上游转子对下游静子叶片气动力的影响   总被引:3,自引:0,他引:3  
为了研究轴流压气机上游转子对下游静子干扰产生的叶片非定常气动力的大小和频率的变化规律,采用在静子叶片表面埋设微型动态压力传感器的方法,在一台低速单级轴流压气机实验器上进行了静子叶片表面压力的测量。测量覆盖了不同轴向间距、不同转速下从近堵塞到近失速的宽广范围,并对实验测量得到的静子叶片非定常气动力进行离散傅里叶变换,以分析其频谱特性。通过对实验结果的分析,初步认识了流量、轴向间距及转速等因素对轴流压气机转/静干扰影响的规律。  相似文献   

13.
为开展气流激励下叶片振动响应分析方法研究,建立了气动激振力预估方法,采用非线性谐波法对叶排进行三维非定常流动分析,获得叶片表面的脉动压力,编制流固转换程序,计算叶片所受的气动激振力。建立了叶片气动阻尼分析方法,基于能量法和弱耦合分析法,对叶片与流场进行流固弱耦合分析,将气动力对运动的叶片所做的气动负功等效为黏滞阻尼力所做的功,求得转子叶片的模态气动阻尼比。建立了叶片在气流激励下的振动响应分析方法,基于气动激振力和叶片模态气动阻尼比,采用模态叠加法分析叶片振动响应。使用该方法,针对发动机中1.5级压气机转、静子叶排模型,计算了转子叶片在真实流场中的气动激振力、前8阶模态气动阻尼比以及在气动激振力与气动阻尼共同作用下转子叶片的振动响应,振动应力达到100 MPa。   相似文献   

14.
悬停状态下无铰旋翼模型气弹稳定性试验   总被引:1,自引:0,他引:1  
夏品奇  徐桂祺 《航空动力学报》1994,9(4):405-408,445
通过悬停状态下2m直径旋翼模型试验, 研究了旋翼结构参数及动力学参数对无铰旋翼桨叶气弹稳定性的影响, 参数包括桨叶总距角、预锥角、预掠角、摆振频率和旋翼转速。桨叶为挥-摆-扭耦合结构, 并能构成面内柔软和面内刚硬旋翼。试验采用在垂直方向以摆振后退型频率进行周期变距激振的新方法, 得到了与理论相一致的结论。   相似文献   

15.
为了研究共轴双旋翼自转状态下的气动特性,开展了共轴双旋翼自转气动特性理论和试验研究.采用叶素理论计算旋翼力及力矩特性,引入气动干扰模型及动态入流捕捉旋翼流场的变化,对共轴双旋翼自转状态下的气动特性进行了理论分析和计算.风洞吹风试验与理论模型计算对比分析表明:旋翼转速较大时的误差小于5%,验证了理论模型的有效性.获得了上/下旋翼转速及升力随着总距角、后倒角、上/下旋翼间距及风速的变化关系.对比分析了上/下旋翼的相互气动干扰强度,获得了有效的共轴双旋翼自转时旋翼拉力分配的计算方法.   相似文献   

16.
为了分析涡轮叶片裂纹故障的3维叶尖间隙动态变化特性,以3维叶尖间隙动态测量试验台上的模拟涡轮转子为研究 对象,建立了涡轮叶片3维叶尖间隙的有限元分析模型;采用数值仿真分析方法分别深入地分析了无裂纹涡轮叶片和不同长度裂 纹叶片3维叶尖间隙的动态变化特性。结果表明:对于无裂纹涡轮叶片,气动载荷会导致其发生弯曲变形,进而,导致轴向偏转角 呈先增大后减小的变化趋势,周向滑移角则逐渐减小,并且气动载荷对轴向偏转角和周向滑移角的影响比对径向间隙的影响更为 显著;对于有裂纹涡轮叶片,在气动载荷、离心载荷、叶片尾缘裂纹故障以及叶片自身形态等多种因素的共同影响下,导致径向间 隙呈现逐渐增大,而轴向偏转角和周向滑移角均呈现逐渐减小的变化趋势。  相似文献   

17.
针对桨叶气动性能的提高,建立了一套基于悬停状态的共轴双旋翼桨叶扭转设计方法.在该方法中,设定单旋翼桨叶扭转几何安装角,通过仿真验证,合理的桨叶扭转,可提高旋翼性能7.0%;根据桨尖涡对桨叶的影响,以及共轴双旋翼气动特性,分别对桨尖几何安装角及上下旋翼几何安装角进行修正,实现悬停状态共轴双旋翼桨叶扭转设计.最后,对所设计的共轴双旋翼进行模拟仿真,结果表明该扭转翼较未经扭转的矩形翼升力提高了10.3%.   相似文献   

18.
基于升力面自由尾迹的直升机旋翼悬停性能参数影响研究   总被引:1,自引:0,他引:1  
 最大悬停效率(FMmax)作为衡量旋翼悬停性能的常用指标,反映了旋翼能达到的最大悬停效率,但不能反映旋翼在一定桨叶载荷范围内保持高悬停效率的能力,本文给出了旋翼悬停保持能力的定义.为更准确地反映桨叶涡量分布,建立了基于升力面理论的桨叶气动模型;考虑有弯度翼型的影响,将涡量布置于翼型中弧线,随后基于自由尾迹模型、耦合刚性桨叶挥舞运动方程、翼型动态失速模型以及二阶精度时间步进格式建立了升力面自由尾迹方法.通过计算模型旋翼在不同桨尖马赫数下的悬停效率,并与试验数据对比,验证了方法的准确性.相比于升力线自由尾迹方法,建立的升力面自由尾迹分析方法能显著提高旋翼悬停效率计算精度.最后分析旋翼关键设计参数对悬停性能的影响,得到设计参数影响旋翼悬停保持能力的新规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号