首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress in plant research in space.   总被引:18,自引:0,他引:18  
Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.  相似文献   

2.
Gravity, cellular membranes and associated processes: an introduction.   总被引:1,自引:0,他引:1  
The aim of the session "Gravity: Cellular Membranes and Associated Processes" was to bring together scientists from different biological disciplines concentrated on the same scientific question: What are the basic interactions or influences, respectively, of gravity on cellular, molecular level? Presentations were selected dealing with the interaction of gravity with basic physico-chemical processes of membranes, such as changes of the membrane composition of human erythrocytes up to ultrastructural changes in a fungus and other objects after exposure to the conditions of space flight, clinorotation or increased acceleration by means of centrifugation. Taken together the data presented here and in the other session of the symposium on "Life and Gravity", clearly outline that future basic physico-chemical studies, and studies dealing with the molecular basis of the cellular signal-perception and transduction, have to be pressed forward in order to understand signal-responses on cellular level, but also of a whole organism.  相似文献   

3.
"Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3 g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3 g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (micro g). The contrary physiological and behavioral results indicate a facilitation of 1 g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of micro g or 3 g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".  相似文献   

4.
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed.  相似文献   

5.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

6.
Since the first flight of the ESA Biorack on the German Spacelab Mission D1 in 1985 evidence has been obtained that biological cells and small unicellular organisms function differently under conditions of microgravity. However, there is still lack of scientific proof that these effects are caused by a direct influence on the cells in the weightlessness condition. The question how normal gravity may play a role in cellular activity is being addressed and the results show that gravity may provide important signals during certain state transitions in the cell. These would be gravity-sensitive windows in the biological process. Also, by amplification mechanisms inside the cell, the cell may assume a state that is typical for normal gravity conditions and would change in microgravity. Experimental tools are discussed that would provide the conditions to obtain evidence for direct action of gravity and for the possible existence of gravity-sensitive windows.  相似文献   

7.
Microtubule self-organisation depends upon gravity.   总被引:3,自引:0,他引:3  
The molecular processes by which gravity is transduced into biological systems are poorly, if at all, understood. Under equilibrium conditions, chemical and biochemical structures do not depend upon gravity. It has been proposed that biological systems might show a gravity dependence by way of the bifurcation properties of certain types of non-linear chemical reactions that are far-from-equilibrium. We have found that in-vitro preparations of microtubules, an important element of the cellular cytoskeleton, show this type of behaviour. On earth, the solutions show macroscopic self-ordering, and the morphology of the structures that form depend upon the orientation of the sample with respect to gravity at a critical moment at an early stage in the development of the self-organised state. An experiment carried out in a sounding rocket, showed that as predicted by theories of this type, no self-organisation occurs when the microtubules are assembled under low gravity conditions. This is an experimental demonstration of how a very simple biochemical system, containing only two molecules, can be gravity sensitive. At a molecular level this behaviour results from an interaction of gravity with macroscopic concentration and density fluctuations that arise from the processes of microtubule contraction and elongation.  相似文献   

8.
To respond to gravity a biological system must: First, perceive the stimulus; and, second transduce the stimulus into an appropriate response. This laboratory has studied a system of perception and transduction involving the gravity-induced asymmetric distribution of a plant growth hormone. From these studies we have developed a working theory which states as its postulates that: a) The perception of the gravitational stimulus involved a perturbation of the plant's bio-electric field; and b) that the transduction of the stimulus involved voltage-gating of hormone movement from the plant's vascular tissue into the hormone responsive growing tissue. These studies may provide the simplest system for studing the mechanism whereby the gravity signal is translated into a biological response.  相似文献   

9.
The principle of establishing and maintaining a gravitropic set point angle depends on gravisensing and a subsequent cascade of events that result in differential elongation of the responsive structures. Since gravity acts upon masses, the gravisensing mechanisms of all biological systems must follow the same principle, namely the sensing of some force due to differential acceleration of the perceiving entity and a reference structure. This presentation will demonstrate that gravisensing can be accomplished by various means, ranging from cytoskeletal organization, mechano-elastic stress to perturbation of electric signals. However, several arguments indicate that sedimentation of either dense plastids (statoliths), the entire protoplast, or a combination of these represents the primary step in graviperception in plants. In fungi, nuclei and cytoskeletal proteins are believed to form a network capable of gravisensing but sedimenting organelles that may function as statoliths have been identified. Theoretical and practical limitations of gravisensing and detection of acceleration forces necessitate microgravity experiments to identify the primary perceptor, subsequent biochemical mechano-transduction, and biological response processes.  相似文献   

10.
Influence of different natural physical fields on biological processes.   总被引:1,自引:0,他引:1  
In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus (Proteus vulgaris), spatial disorientation in coleoptiles of Wheat (Triticum aestivum) and Pea (Pisum sativum) seedlings, mutational changes in Crepis (Crepis capillaris) and Arabidopsis (Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.  相似文献   

11.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

12.
The regular change of day and night, of light and darkness during millions of years has strongly affected the development of life on earth. Many organisms adapted themselves to this environmental condition and, finally, evolved an endogenous timer which usually is in phase with the earth's rotation and causes many functions to perform one oscillation per day. Such circadian rhythms (derived from circa dies i.e. about 1 day) were found in almost all classes of plants and animals, and even in protozoans. They persist in a constant environment and, therefore, are independent of any known external trigger signals. Since even unicells perform circadian rhythms which are similar to those observed in highly developed multicellular organisms many scientists favor the existence of a basic mechanism common to all kinds of biological clocks that is located somewhere in the single cell and probably comprises many different biochemical reactions. One purpose of this topical meeting was to discuss how organisms respond to the absence of gravity and terrestrial zeitgeber and how they may react to the imposing of hypergravity fields. Another aim was to develop model-mechanisms appropriate to describe these responses.  相似文献   

13.
Growth process generate plant form and relate to most physiological functions. The Earth's gravity force affects plant growth in both obvious and subtle ways. It is a major environmental influence on morphology and physiology of plants. Gravity is less important as an agent for plant stress than as an environmental signal to guide growth. The plant's bioaccelerometers are remarkably sensitive, especially in hypogravity. Simulation (clinostat) studies and experiments in satellite laboratories are needed to understand the sensing, transduction, and response characteristics of g related mechanisms. By examining how plants alter growth processes to accomplish developmental or physiological “objectives” we may find it pragmatically desirable to ask ourselves how we might design a plant to achieve such responses to environmental influences. Examples of this design engineering approach for gravity related effects are described as an aid to experimentation.  相似文献   

14.
Microgravity and bone cell mechanosensitivity.   总被引:5,自引:0,他引:5  
The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts. In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone.  相似文献   

15.
Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism 1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.  相似文献   

16.
Rhythmic phenomena in biology cover a wide frequency spectrum. In Space, the rhythms will encounter microgravity conditions which can, therefore, be a valuable tool for their understanding. A review and discussion of important effects of gravity/absence of gravity on biological systems will be given. Convection will be emphasized as a mechanism which is drastically reduced in Space. Microgravity might also affect the coupling between individual oscillators in a multi-oscillatory system. The environmental interference with rhythms will be discussed with a simple feedback as a starting point. Model simulations will be presented and clinostat and microgravity-conditions will be discussed in a specific case, viz. the gravitropical system of plants which can show sustained oscillations.  相似文献   

17.
Living organisms, especially plants, show some plasticity in their overall development, usually as a response to the external environment. Plasticity may apply not only to the external form of organisms but also to their physiology as well as to the detailed structure of their genome. A further example of plasticity may be developmental instability, where anomalous development seems to appear spontaneously, probably as a result of some transient environmental perturbation. Whether the absence of gravity would have sufficient impact on any living process to evoke a specific course of plastic development is unknown, though it is possible that in certain circumstances special forms, or 'agravimorphs', could be produced. Through such new forms, it should be possible to identify processes required for development in which 1 x g gravity is a necessary participant.  相似文献   

18.
The initial event of gravity perception by plants is generally thought to occur through sedimentation of amyloplasts in specialized sensory cells. In the root, these cells are the columella which are located toward the center of the root cap. To define more precisely the contribution of columella cells to root gravitropism, we used laser ablation to remove single columella cells or groups of these cells and observed the effect of their removal on gravity sensing and response. Complete removal of the cap or all the columella cells (leaving peripheral cap cells intact) abolishes the gravity response of the root. Removal of stories of columella revealed differences between regions of the columella with respect to gravity sensing (presentation time) versus graviresponse (final tropic growth response of the root). This fine mapping revealed that ablating the central columella located in story 2 had the greatest effect on presentation time whereas ablating columella cells in story 3 had a smaller or no effect. However, when removed by ablation the columella cells in story 3 did inhibit gravitropic bending, suggesting an effect on translocation of the gravitropic signal from the cap rather than initial gravity perception. Mapping the in vivo statolith sedimentation rates in these cells revealed that the amyloplasts of the central columella cells sedimented more rapidly than those on the flanks do. These results show that cells with the most freely mobile amyloplasts generate the largest gravisensing signal consistent with the starch statolith hypothesis of gravity sensing in roots.  相似文献   

19.
Magnetic levitation-based Martian and Lunar gravity simulator.   总被引:2,自引:0,他引:2  
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity.  相似文献   

20.
It is possible to cultivate plants under an artificial gravity field generated by a centrifugal device in space. In order to determine an optimal magnitude of gravity, there is a need to investigate the relationship between plant and growth and gravity, including not only reduced gravity but also gravity greater than 1G. A prototype centrifugal phytotron was designed and fabricated in order to investigate the relationship between plant growth and increased gravity. This device enables us to cultivate plants over the long term by controlling environmental conditions in the phytotron such as temperature, relative humidity, CO2 concentration and light intensity. The results of our experiment indicate that plant seeds can germinate and grow even under an artificial gravity which changes sinusoidally from 2G to 4G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号