首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989.  相似文献   

2.
Aboard the NASA satellite Long Duration Exposure Facility (LDEF) heavy ions of nuclear charge Z = 8-26 were detected with energies between 15 and 50 MeV/nuc which are far below the cutoff energy required of fully stripped ions to reach the LDEF orbit. The arrival directions and the falling energy spectra of these particles are consistent with a trapped component incident in the South Atlantic Anomaly at L = 1.4-1.6. The trapped oxygen, neon and argon ions probably originate from the anomalous cosmic rays, whereas the origin of the other particles like magnesium, silicon and iron is not yet solved but may be associated with the October 89 solar energetic particle events.  相似文献   

3.
The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in low Earth orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.  相似文献   

4.
After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.  相似文献   

5.
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.  相似文献   

6.
Mutational effects of space flight on Zea mays seeds.   总被引:10,自引:0,他引:10  
The growth and development of more than 500 Zea mays seeds flown on LDEF were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.  相似文献   

7.
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location.  相似文献   

8.
Under NASA's Space Environment Effects (SEE) program, we are developing new models for the low-altitude (250–1000 km, L < 1.5) trapped radiation environment based on data from the TIROS/NOAA polar orbiting spacecraft. The unique features of this data base and model include the long time series (more than one complete solar cycle) obtained from the TIROS/NOAA data and the use of a coordinate system more applicable to the low-altitude environment. The data show a strong variation (as much as a factor of 10) over the solar cycle and a hysteresis effect between the rising and falling portions of the solar cycle. Both the solar cycle variation and the hysteresis are functions of L. In addition to the hysteresis effect, the flux during a given cycle appears to be a function of the previous cycle. Superimposed on the gradual variation over the solar cycle, transient effects, correlated with solar particle events (SPEs), can be clearly seen. Comparison with the AP8 models shows that the measured flux is a factor of 2–3 higher than the model. These data have important implications for the development and use of trapped radiation models, and will also contribute to our knowledge of the source and loss mechanisms at work in the inner zone.  相似文献   

9.
Radiobiology experiments performed in space will encounter continuous exposures to the cosmic rays and fractionated exposures to trapped protons which accumulate to several hundred dose fractions in a few weeks. Using models of track structure and cellular kinetics combined with models of the radiation environment and radiation transport, we consider calculations of damage rates for cell cultures. Analysis of the role of repair mechanisms for space exposures for the endpoints of survival and transformation is emphasized.  相似文献   

10.
Described is a passive experiment for LDEF (Long Duration Exposure Facility) to measure the chemical and isotopic composition of interplanetary dust particles >10−10g for most of the major elements expected to be present. The detector consists of Ge targets covered with a metallized plastic film. During impact micrometeoroid vapor and melt are deposited on the underside of the foil which can be analyzed be secondary ion mass spectroscopy (SIMS) after the return of LDEF. Additional information on projectile mass, velocity and density can be obtained from the study of the penetration hole and the impact crater. Criteria for the choice of materials are given and first results of impact simulation experiments are reported which demonstrate the viability of the basic concept and show that isotopic data can be obtained from the deposits.  相似文献   

11.
12.
地球高层大气成分的长期变化受太阳黑子周、太阳活动程度和地磁活动程度等诸多因子所控制.本文利用国外有关高层大气成分的数据,分别讨论受上述控制因子影响的高层大气成分长期变化,讨论范围仅限原子氧半年周期变化.选用LDEF在轨飞行器1984年4月—1990年1月高度470km附近的长期资料进行统计分析,结果表明,高度470km附近原子氧在年平均太阳黑子数<20、太阳活动程度相对低而平稳期间,半年周期的变化尤为明显,相对变幅约为40%—60%、井随平均太阳黑子数增加而增大.而年平均太阳黑子数峰值的1989年期间(>120),半年变化的相对变幅可达87%左右.  相似文献   

13.
在建立数学物理模型的基础上,对低地球轨道环境和地面试验环境下有无保护涂层的聚酰亚胺所受原子氧冲蚀及紫外线的综合作用进行了数值模拟,获得了具有工程应用价值的计算结果,并讨论了数学物理模型中各参数对基蚀曲线形状的影响.从数值模拟结果与美国太空试验结果的比较可以看出,得出的数值模拟的结果是正确的,对航天器设计具有重要的指导意义.  相似文献   

14.
The results of an initial examination of the LDEF MicroAbrasion Package (MAP) and limited results from other onboard hardware are presented. The intriguing tasks of interpreting these data in terms of the dynamics of a particulate distribution of natural and artificial origin are discussed. It emphasises the unique aspects of the mission and especially the attitude stabilisation which may be exploited to extract a greater range of information compared with that previously derived from space collections and exposure of similar passive sensors.  相似文献   

15.
Extremely detailed computerized anatomical male (CAM) and female (CAF) models that have been developed for use in space radiation analyses are discussed and reviewed. Recognizing that the level of detail may currently be inadequate for certain radiological applications, one of the purposes of this paper is to elicit specific model improvements or requirements from the scientific user-community. Methods and rationale are presented which describe the approach used in the Space Shuttle program to extrapolate dosimetry measurements (skin doses) to realistic astronaut body organ doses. Several mission scenarios are presented which demonstrate the utility of the anatomical models for obtaining specific body organ exposure estimates and can be used for establishing cancer morbidity and mortality risk assessments. These exposure estimates are based on the trapped Van Allen belt and galactic cosmic radiation environment models and data from the major historical solar particle events.  相似文献   

16.
The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.  相似文献   

17.
Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) recently led to results, which will contribute for the estimation of genetic risk for long and/or repeated stay of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effects caused by ionizing radiation in particular stem cells. In this article we present an overview of our space experiments with Arabidopis thaliana seeds. We present first results of investigations on certain damage endpoints (seed germination, plant survival, mutation frequencies), caused by cosmic ionizing radiation in dry dormant plant seeds of Arabidopsis thaliana after different short term (e.g. IML-1 and D-2) and long term (e.g. EURECA and LDEF-1) space exposures. Total dose effects of heavy ions and the other components of the mixed radiation field on damage endpoints and survival after space exposure and gamma-ray preirradiation were obtained. A new method of total dose spectrometry by neutron activation has been applied.  相似文献   

18.
The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, Dh, and for semi-infinite targets, the depth-to-diameter ratio of craters, . An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.  相似文献   

19.
In long duration space experiments Rice caryopses and embryos, which are able to remain alive 10 years (or more) and tolerate extreme physical conditions (temperature, few water content) during irradiation and post-irradiation storage, were used (8, 40, 201 and 457 days on board of Salyut 7, 2107 days on LDEF). In certain experiments (Salyut 7), samples were irradiated either before or after the flight. Effects of the flight and radiosensitivity were observed in Rice seedlings cultivated in in vitro conditions. Statistical results indicate an increase in radiosensitivity when irradiations occur before the flight. Microanalyses were made in different parts of one caryopsis and of one embryo, and the results compared with those of control samples. With caryopses and embryos of the same Rice varieties, but from LDEF, we made the same kinds of experiments to compare results.  相似文献   

20.
Measurements of hypervelocity impact fluxes (in both thick and thin targets) detected by the University of Kent at Canterbury's Timeband Capture Cell Experiment (TiCCE) (flown on ESA's Eureca spacecraft) are presented. The foil perforations are used to derive the ballistic limit values, or the maximum thickness of A1 perforated, for the impacting particles. This data is then combined with the thick target data to derive a unified ballistic limit flux. A significant enhancement in the observed large particle flux compared with LDEF is found, possibly due to the pointing history of Eureca compared to the Earth's orbital direction. Comparisons are also made to predictions from ESABASE modelling. Preliminary results of a study of perforation morphology are also presented, providing insight into particle shape, density and directionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号