首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄琳  张骏  王建华 《固体火箭技术》2012,(5):656-660,664
利用1H NMR和13C NMR研究了HTBN多元醇的端羟基类型、构造异构体与构型异构体的组成,以及HTBN嵌段结构组成比例和共聚物序列结构;同时,利用DSC和DMA分析了固化预聚体涂层的微相分离结构,考察了微相分离结构与材料宏观力学性能的关系。研究表明,含有丙烯腈(AN)链段是HTBN和ITBN预聚体粘度较高。以及固化预聚体高强度、高粘接性的主要原因;HTBN中含有半数以上与trans-1,4-BD结构相联的高反应活性羟基,使得室温下预聚反应就可发生;HTBN中AN具有强极性且易形成氢键,增加了软硬段间的相容性,使相分离程度明显减小,且HTBN链段松弛转变活化能低、松弛转变时间短,使其制备的防护涂层具有优良的低温力学性能。  相似文献   

2.
提出了一种测试聚氨酸预聚体合成中氨酯化反应和支化反应的反应动力学参数的理论模型,并对甲苯二异氰酸酯(TDI)与乙二醇(EG)的预聚反应进行了研究,结果表明:通过^13CNMR测出的支化概率值跟从理论模型中获得的支化概率值基本吻合。  相似文献   

3.
为拓宽航天飞行器防热涂层裂解温域,提高涂层的耐烧蚀性能,文章通过热重–差示扫描量热分析仪(TG-DTG)分析了2种硅橡胶基体的热分解行为,并结合马弗炉烧蚀实验研究铁红、云母、白炭黑等3种功能组元对硅橡胶涂层静态烧蚀性能的影响,通过扫描电镜(SEM)以及红外光谱分析仪(FT-IR)分析烧蚀机理,最后通过马弗炉烧蚀实验及高温燃气流烧蚀实验对2种涂层的烧蚀性能进行考核。结果表明:甲基苯基硅橡胶在220~320℃温域的裂解主要以侧基交联为主;在320~480℃以由羟基引发的主链"回咬"机制为主;在480~630℃则通过链间折叠发生环降解反应。主链"回咬"和链间环降解反应均会导致树脂基体交联密度降低,力学性能下降,产生"粉化"。甲基乙烯基硅橡胶在其裂解温域370~780℃主要发生侧基交联反应,树脂基体交联密度上升,热稳定性提高。白炭黑对于2种硅橡胶基体的热稳定性提升最为显著;铁红、云母等均会在高温下与硅橡胶基体产生共融,减缓硅橡胶基体的高温裂解。  相似文献   

4.
以3,3-双(叠氮甲基)环氧丁烷-四氢呋喃共聚醚(PBT)为软段,以甲苯二异氰酸酯(TDI)、1,4-丁二醇(BDO)和丙三醇为硬段制备了一系列PBT叠氮型聚氨酯弹性体。采用红外光谱法(FTIR)表征了弹性体的结构和氢键化程度,结果表明PBT叠氮聚氨酯弹性体中大部分的氨基形成了氢键,且随着硬段含量的增加,形成氢键的羰基分数增加。当硬段含量为35%时,PBT/TDI/BDO和PBT/TDI/BDO/Glycerol体系的氢键化程度分别增加到80%和82%。采用流变法测定了不同硬段含量叠氮型聚氨酯弹性体的玻璃化转变温度,建立了PBT/TDI/BDO叠氮型聚氨酯弹性体微相分离程度的定量方程,并以此来评估该弹性体的微相分离程度。  相似文献   

5.
HTPB与TDI固化的分子模拟研究   总被引:3,自引:0,他引:3  
为了提供固化反应的微观信息,运用Materials Studio 4.2分子模拟软件,构建HTPB和TDI分子模型,对HTPB和TDI固化进行分子动力学(MD)和合成(Synthia)模拟。分析了固化体系的构型、键长、X-射线散射图谱和弹性模量,结果表明,氰酸酯基(—NCO)中的N C双键变单键和羟基O—H断开,形成新化学键(—HNCOO—)生成氨基甲酸酯;HT-PB与TDI是一个自发进行的固化反应;HTPB-TDI固化体系的力学性能得到了改善,为HTPB-TDI固化研究提供了一种切实可行的新方法。  相似文献   

6.
环氧化端羟基聚丁二烯室温固化及性能研究   总被引:1,自引:0,他引:1  
针对环氧化端羟基聚丁二烯(EHTPB)中环氧基团难以室温固化的特性,探索了以钛酸酯偶联剂(TC-114)为固化剂实现EHTPB室温固化的固化工艺。采用红外光谱(FTIR)证明了TC-114中的P—OH能够使EHTPB的环氧基团在室温下开环固化,借助差示扫描量热法(DSC)研究了该固化体系的固化动力学特征,推导出该固化反应的表观活化能为40.76 kJ/mol。考察了TC-114用量、固化温度、EHTPB初始环氧值等对固化产物力学性能的影响规律。结果表明,当TC-114质量含量为24%、固化温度为50℃时,固化产物的力学性能最佳。  相似文献   

7.
环氧树脂/氰酸酯共混树脂已用作液氧贮箱复合材料的基体树脂。本文选用低吸水率的双酚A二炔丙基醚(DPEBA)与氰酸酯等摩尔共混,研究以不同催化剂对DPEBA与氰酸酯共混树脂体系固化反应的影响,并考察了催化固化的共混树脂体系的热稳定性和冲击性能。研究结果表明:过渡金属的乙酰丙酮盐和二丁基二月桂酸锡可降低双酚AF型氰酸酯(BAFDCy)的固化温度,质量分数为0.2%的乙酰丙酮铜可明显使BAFDCy的固化温度降至200℃以下。双酚A二炔丙基醚(DPEBA)预聚后与氰酸酯等摩尔共混,在0.3%的Cu(acac)_2催化下,可在200℃以下固化,与双酚E型氰酸酯、双酚A型氰酸酯和双酚AF型氰酸酯共混树脂的固化物在空气中600℃的残留率分别为38%、36%和0.7%,浇铸体的冲击强度分别为5、6和8 kJ·m~(-2)。  相似文献   

8.
为获得Ag/Ni@SiO_2/环氧树脂电磁屏蔽涂层的最佳性能,预制了平均粒径为550 nm、磁导率为3.133 2×10~(-5)H/m的二氧化硅镀镍镀银(Ag/Ni@SiO_2)纳米微球,以该微球为填料,环氧树脂为基体,制备了不同含量填料、不同固化温度及固化时间的电磁屏蔽涂层样品,测试其导电性能、导磁性能及电磁屏蔽性能。测试结果表明,在设定固化温度为90℃、固化时间为2 h下,当填料质量分数为65%时,涂层体积电阻率到达渗滤值,当填料质量分数达到70%时,材料内部形成完整导电网络,体积电阻率趋于平缓;最优固化工艺为固化温度110℃,固化时间3 h,填料质量分数达80%的导电涂层材料导涂层的磁导率为9.964×10~(-6)H/m,饱和磁化度为0.020 62 A·m~2/kg,体积电阻率达到0.018 8Ω·cm。涂层在2.25~2.65GHz和6.57~9.99 GHz频段下,传输效能分别为-54.8、-40.6 d B,填料含量大于70%时涂层对电磁波全反射。  相似文献   

9.
为了提高连续碳纤维增强镁基(Cf/Mg)复合材料的强度,采用压力浸渗法制备了T300/AZ91D和T700/AZ91D两种复合材料,通过改变预热温度和浇铸温度,对采用压力浸渗法制备连续Cf/Mg复合材料的组织与力学性能进行了研究。研究结果表明:预热温度太高会损坏碳纤维,影响碳纤维与基体的结合;浇铸温度太低会使熔体在碳纤维未浸渗完全时便已开始凝固;浇铸温度太高会损坏碳纤维,降低复合材料的力学性能;当预热温度为450 ℃、浇铸温度为800 ℃时,制备的T300/AZ91D复合材料弯曲强度最高,为865 MPa;当预热温度为450 ℃、浇铸温度为750 ℃时,制备的T700/AZ91D复合材料弯曲强度最高,为1 153 MPa。通过研究,提高了碳纤维增强镁基复合材料的力学性能,使该材料能更广泛地应用于航空航天领域。  相似文献   

10.
采用聚碳硅烷(PCS)作为先驱体,通过浸渍裂解法制备C/C-SiC材料,分别经过1 400、1 500、1 600℃高温处理,研究了不同处理温度对SiC基体的微晶形态及C/C-SiC材料力学性能和抗氧化性能的影响。结果表明,3种处理温度下,SiC的晶型主要为β-SiC。温度升高,晶粒尺寸增大,1 500℃以后生长速度减缓;SiC微晶优先沿着(111)晶面生长,(220)和(311)晶面的生长取向逐渐增加。处理温度升高,C/C-SiC材料的弯曲强度和剪切强度不断下降。1 400℃处理后,C/C-SiC材料的断裂方式呈现出非常明显的韧性断裂。C/C-SiC材料在1 500℃静态空气中的氧化失重率随高温处理温度的升高而逐渐增大,氧化程度越来越严重,断面典型区域的氧化形貌由"尖笋状"成为"梭形"。  相似文献   

11.
研究了不同热处理温度对高硅氧织物增强甲基硅树脂复合材料室温弯曲强度的影响。结果表明,复合材料室温弯曲强度随着热处理温度的升高而降低,且在200~300℃、400~500℃分别出现了2个降低最快的温度区间。采用扫描电镜对复合材料弯曲断口的表面形貌进行了观察,并通过热重分析仪分别对基体树脂及增强体的热稳定性进行了测量。综合分析结果表明,当热处理温度低于400℃时,复合材料弯曲强度的降低主要是由于基体树脂与增强体之间的界面失效所致;而当热处理温度高于400℃时,增强体与树脂之间发生反应,导致增强体失效,是致使复合材料室温弯曲性能进一步下降的主要原因。  相似文献   

12.
本文用适量端羟基聚丁二烯与聚碳硅烷共混物为先驱体制备了高强度碳化硅纤维。聚碳硅烷与端羟基聚丁二烯在260℃左右发生交联反应。利用它们的共混物作先驱体制备碳化硅纤维可减少先驱纤维不熔化处理时所需要引进的氧,从而减少碳化硅纤维中二氧化硅杂质含量,提高碳化硅纤维的强度。聚碳硅烷与3wt%的端羟基聚丁二烯共混后,所得碳化硅纤维强度可提高26%左右。  相似文献   

13.
NEPE推进剂老化表现为"两段式",即稳定剂完全消耗前后(分别对应Ⅰ阶段和Ⅱ阶段),推进剂力学性能出现显著差异.文中借鉴双基系推进剂和NEPE推进剂老化研究结果,在进一步分析"两段式"老化特性的基础上,探讨了提高NEPE推进剂贮存寿命的技术途径,计算了"两段式"老化过程的动力学参数,并比较了温度对两阶段主要反应的影响.结果表明,Ⅰ阶段稳定剂消耗反应和Ⅱ阶段推进剂聚合物基体降解反应的表观活化能分别为86.18 kJ/mol和166.35 kJ/mol,常温25 ℃时两阶段的老化速率分别为1.30×10~(-4) d~(-1)和2.75×10~(-6) d~(-1),温度对两个老化阶段都有很大影响,但老化第Ⅱ阶段受温度的影响远大于第Ⅰ阶段.  相似文献   

14.
HTPB/TDI衬层与NEPE推进剂的界面反应机理   总被引:1,自引:0,他引:1  
采用富立叶变换红外光谱(FTIR)和全反射红外光谱(FTIR/ATR),研究了半固化的HTPB/TDI衬层表面的活性基团以及不同的—NCO基团与不同羟基的反应速率。结果表明,半固化的HTPB/TDI衬层表面含有大量的—NCO基团;HTPB/TDI衬层和NEPE推进剂粘合剂相的—NCO基与—OH的交叉反应速度较NEPE推进剂的固化反应速度快得多。HTPB/TDI衬层与NEPE推进剂界面的化学反应机理是粘合剂相中—OH基和—NCO基的交叉反应,其中衬层中TDI分子的—NCO基与PEG分子的—OH基的反应速度稍快于NEPE推进剂中N100分子的—NCO基与HTPB分子的—OH基的反应;在界面区域,HTPB/TDI衬层与NEPE推进剂通过氨基甲酸酯键形成化学粘接。  相似文献   

15.
以邻甲酚酞和对氯硝基苯为初始原料,经过亲核取代反应、硝基还原反应合成一种含酚酞结构的芳香二元胺(MPDA);MPDA再与双酚A型二醚二酐(BPADA)进行缩合反应,采用马来酸酐(MA)进行封端;最后,经环化脱水反应,制得马来酰亚胺封端的含酞Cardo结构聚醚酰亚胺齐聚物(mPEI-C)。利用FTIR、~1H-NMR、DSC、TGA及DMA等分析测试手段,表征了mPEI-C的化学结构、固化行为、耐热性能及其固化薄膜在不同温度下的力学性能。采用湿法预浸-模压法,制备T700炭纤维增强mPEI-C树脂基复合材料,测试表征了复合材料的力学性能,研究探讨了复合材料的破坏机制。研究结果表明,mPEI-C为无定型的低分子量齐聚物,具有优异的溶解性能和耐热性能,玻璃化转变温度达320℃以上,初始热分解温度接近430℃,室温下固化薄膜拉伸强度达130 MPa;其炭纤维复合材料的层间剪切强度和弯曲强度也分别达到了86.2、1481.6 MPa,且表现出良好的耐湿热能力。  相似文献   

16.
采用非等温DSC、TG等研究了SiBCN陶瓷先驱体-聚硅硼氮烷(PBSZ)的固化、陶瓷化行为,运用FTIR、XRD、SEM等手段表征了PBSZ先驱体在不同温度的裂解产物结构和微观形貌。通过Kissinger、Crane方程得到PBSZ先驱体的固化动力学参数:活化能Ea=243.27 kJ/mol,反应级数n=0.958。PBSZ先驱体的质量损失主要发生在500~800℃,聚合物中有机基团逐渐减少,基本完成无机化转变。XRD结果表明,在1500℃以下裂解得到的产物为表面致密的非晶态SiBCN结构,而在1800℃下裂解产物发生了晶化转变,得到的陶瓷产物包含Si C、Si_3N_4、BN(C)等相。  相似文献   

17.
为改善GAP基含能热塑性弹性体(ETPEs)粘合剂的力学性能,通过溶液共聚,以一缩二乙二醇(DEG)为扩链剂,合成得到聚叠氮缩水甘油醚/聚己内酯(GAP/PCL)含能热塑性弹性体。通过傅里叶变换红外光谱(FTIR)对合成的ETPEs进行结构表征,万能材料拉伸机和动态热机械分析(DMA)测试其力学性能。研究比较—NCO/—OH摩尔比(R值)、扩链剂用量、异氰酸酯种类和软段中GAP/PCL质量比对ETPE力学性能的影响。结果表明,制备的ETPEs具有典型的叠氮聚醚聚氨酯特征;确定当R=1.15,DEG的羟基占总反应羟基的40%时,ETPEs的力学性能较好,抗拉强度为13.50 MPa、断裂伸长率为1 654%,升高软段中PCL的含量时,试样力学性能上升明显;低温力学性能中,软段柔顺性好的PCL的引入,会降低ETPEs的储能模量,玻璃化转变温度Tg最低可至-30.4℃。  相似文献   

18.
采用液相先驱体,以3D针刺C/C多孔材料为反应基体,制备了C/C-TaC多元复合材料。采用XRD和SEM对C/C-TaC多元复合材料的相组成和显微结构进行了分析。结果表明,采用液相先驱体,以基体炭为炭源,简化了C/C-TaC制备工艺;经900℃预处理后,液相先驱体固化产物转化为纳米级别的Ta2O5,有助于TaC合成反应的进行;提高反应温度有助于减少中间产物影响,至2 000℃可得到晶化度较高的化学计量比TaC。  相似文献   

19.
通过对炭纤维增强复合材料进行150℃和210℃下的高温老化试验,分析了该复合材料在不同老化温度下的失重率、层间剪切性能、动态力学性能和红外光谱图等。结果表明,老化初期该复合材料的质量损失很快,层间剪切强度有所提高;随着老化时间的增加,老化温度为150℃下的老化失重率逐渐趋于平稳,层间剪切强度先下降、后略微增加,该温度下只发生物理老化;老化温度为210℃下的老化失重率仍缓慢增加,在该温度下,既发生物理老化,又有化学老化,树脂基体被氧化降解,导致基体和界面性能退化,使其层间剪切强度连续下降。  相似文献   

20.
采用DSC研究了有机硅固化剂1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)与双酚F环氧树脂(BPFER)的固化动力学。BPFER/DSX体系的非等温固化反应曲线和dα/dt-t曲线表明,该反应符合自催化反应模型的基本特征。T-β曲线预测的固化工艺的凝胶温度、固化温度和后固化温度分别为36、87、138℃。采用E变量法分析得该体系的固化反应表观活化能为46.70~50.54 kJ/mol,与Starink、Kissinger、Ozawa、Boswell等方程的验证结果基本一致。采用E常量法求得该体系不同升温速率下的固化反应动力学方程,动力学方程预测值与实验值十分吻合。TG和DTG曲线表明,BPFER/DSX固化物的耐热性优于BPFER/DDM固化物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号