首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   

2.
《Acta Astronautica》2007,60(4-7):420-425
The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.  相似文献   

3.
In the 18.5-day flight of the Soviet biosatellite Cosmos-936 (3-22, August 1977) com-parative investigations of the physiological effects of prolonged weightlessness (20 rats) and artificial gravity of 1 g (10 rats) were carried out. Throughout the flight artificial gravity was generated by means of animal rotation in two centrifuges with a radius of 320mm. Postflight examination of animals and treatment of the flight data were performed by Soviet scientists in collaboration with the specialists from Bulgaria, Czechoslovakia, the German Democratic Republic, Hungary, Poland, Rumania, France and the U.S.A. During the flight the total motor activity of the weightless rats was higher and their body temperature was lower than those of the centrifuged animals. Postflight examination of the weightless rats showed a greater percentage of errors during maze an increase in water intake and a decrease in diuresis; a fall of the resistance of peripheral red cells; an increase in the conditionally pathogenic microflora in the mouth; a decrease of oxygen consumption, carbon dioxide production and energy expenditures; a drop in the static physical endurance; a decline in the capacity to keep balance on the rail; an increase in the latent period of the lifting reflex, etc. The centrifugal animals displayed lesser or no change of the above type. These findings together with the biochemical and morphological data give evidence that during and after flight adaptive processes in the centrifuged rats developed better.  相似文献   

4.
Adaptation to the weightless state and readaptation after space flight to the 1-G environment on the ground are accompanied by various transitory symptoms of vestibular instability, kinetosis, and illusory sensations. Aside from the problem of how to treat and if possible prevent such symptoms, they offer a clue to a better understanding of normal vestibular functions. Weightlessness is a powerful new "tool" of vestibular research. Graybiel reported as early as 1952 that human subjects observed the illusion that a real target and the visual afterimage seemed to raise in the visual field during centrifugation when the subjects were looking toward the axis of rotation (oculogravic illusion). In aircraft parabolic-flight weightlessness, human subjects observed that fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculoagravic illusion). It can be shown by electronystagmography as well as by a method employing double afterimages that part of this illusion is caused by eye movements that are triggered by the changing input from the otolith system. Another part of the illusion is based on a change of the subjective horizontal and must be caused by convergence of vestibular and visual impulses "behind" the eyes. This part was measured independently of the first one by using a new method. Eye movements could be prevented during these experiments by optical fixation with the right eye on a target at the end of a 24-in. long tube which was rigidly attached parallel to the longitudinal axis of an aircraft. At the same time the subject tried to line up a shorter tube, which was pivoting around his left eye, with the subjective horizon.  相似文献   

5.
The motion of a space object in the gravitational field of the Earth is considered. The object consists of an extended space station and a weight, which is free to move along the cable fixed to the ends of the station. It is assumed that the station is composed of two masses coupled by a weightless rod, while the cable is weightless and non-stretched. The equations of motion of such a system are derived for the case when the motion proceeds in a single plane, while the center of mass of the system moves along a circular geocentric orbit. The conditions of the cable tension (conditions of being on tie) are derived. The phase portrait of the weight motion along the cable is constructed when the station is oriented to the attracting center or is perpendicular to this position. The possibility to leave the tie in this case is analyzed. Equilibrium configurations of the system are found, i.e., such motions of the object under consideration at which the weight does not change its position relative to the station. Lyapunov stability of such configurations is analyzed for two situations: when the station is composed of equal masses and when masses at the ends of the station are different. In particular, for the case of different masses it is established that there exist such positions of equilibrium at which the dumbbell is located at an angle to the direction to the attracting center. In some cases these positions can be stabilized (if the weight is fixed on the cable).  相似文献   

6.
基于Lagrange方法的航天员舱外活动计算机仿真   总被引:2,自引:0,他引:2  
杨锋  袁修干 《宇航学报》2003,24(4):337-340,363
在比较各种地面微重力模拟设备的优缺点的基础上,阐述了计算机动态仿真航天员舱外活动(EVA,Extra Vehicular Activity)的必要性。简要的概述了应用计算多刚体系统动力学对EVA进行仿真的步骤。描述了拉格朗日方程在仿真过程中的应用,建立了用于仿真的动力学方程。选取典型的EVA,得出了描述该EVA系统运动的拉格朗日动力学方程。利用反向运动学和反向动力学对该EVA进行了仿真计算,并对结果进行了分析。  相似文献   

7.
Pradels G  Touboul P 《Acta Astronautica》2003,53(4-10):779-787
The scientific objectives of the MICROSCOPE space mission impose a very fine calibration of the on-board accelerometers. However the required performance cannot be achieved on ground because of the presence of high disturbing sources. On-board the CHAMP satellite, accelerometers similar in the concept to the MICROSCOPE instrument, have already flown and analysis of the provided data then allowed to characterise the vibration environment at low altitude as well as the fluctuation of the drag. The requirements of the in-orbit calibration procedure for the MICROSCOPE instrument are demonstrated by modelling the expected applied acceleration signals with the developed analytic model of the mission. The proposed approach exploits the drag-free system of the satellite and the sensitivity of the accelerometers. A specific simulator of the attitude control system of the satellite has been developed and tests of the proposed solution are performed using nominal conditions or disturbing conditions as observed during the CHAMP mission.  相似文献   

8.
Bluem V  Paris F 《Acta Astronautica》2001,48(5-12):287-297
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i.e. that the plants exhibited biomass production rates identical to the sound controls and that as well the reproductive, and the immune system as the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle flight (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiment and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the shortterm space experiments with the C.E.B.A.S. MINI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

9.
Lighter-than-air vehicles are being studied and developed as solutions to problems in transportation and in communications and service. These vehicles include balloons, balloon-airship systems and airships. Tethered balloons of streamline form have been developed for both military (surveillance) and civil (telecommunications) applications. These are capable of flying at 4600 m altitude in 100 km/hr winds and supporting payloads up to 1678 kg. Other applications include use of natural shaped balloons for logging in forested areas and for transport of cargo from ship-to-shore. Free balloons have been flown up to 51, 812 m and 7624 kg have been carried to 34,440 m. Balloon-like remotely piloted airships are being studied and developed as high altitude geo-stationary platforms for telecommunication and surveillance. Many new and lower cost benefits would result from the successful development of this type. The carrying of heavy large-volume cargoes promises to be an important and unique application for airships which are designed to achieve precise hovering while being loaded or unloaded. Several types are being studied for this purpose. Other new applications include use of airships for airport feeder passenger transport, and as large long endurance naval patrol vehicles. Technology programs must be developed which will enable new airships to be designed and built. These would include studies in aerodynamics, materials, structures, propulsion, and operational techniques. The advancement of these new concepts is handicapped by the lack of an established industry, confidence, and the complexity and cost of development. Yet where success has been achieved, it has been worth the risk. Government support is required to achieve these goals.  相似文献   

10.
Pre-germinated pine seedlings and germinating oat and mung bean seeds were flown on the STS-3 Space Shuttle mission. Overall, the seedlings grew and developed well in space. Some oat and mung bean roots, however, grew upward. Lignin content was slightly lower in flight tissues and protein content was higher.  相似文献   

11.
12.
We demonstrated free flow electrophoresis (FFE) of charged cells under microgravity, where gravitational effects are almost eliminated. Separation of a mixture of three bacterial strains (mutants of Salmonella typhimurium LT2) by FFE was conducted on NASA Space Shuttle flight STS-47 (September 1992). The experiment was designed to differentiate three strains having different lipopolysaccharide core structures in the cell membrane. The results were compared to those of ground experiments, in order to examine whether or not FFE in a weightless environment provides distinct advantages. Smooth strain SL1027 and rough strain SL3749 migrated to two separated fractions. The quality (viability) and the yields of the separated samples were sufficient to show the advantage of microgravity. Another rough strain, SL1102, exhibited unexpected electrophoretic behavior, which prevented the complete resolution of the three strains. All the strains were recovered as viable cells after 8 days of flight. The present study suggests that electrophoretic separation of bacterial cells is much more effective under microgravity conditions with relatively good resolution in comparison with the ground operation.  相似文献   

13.
Positive psychological effects of space missions   总被引:1,自引:0,他引:1  
Being in space is a powerful experience that can have an enduring, positive impact on the psychological well-being of astronauts and cosmonauts. We sought to examine the frequency, intensity and distribution of such salutogenic experiences among persons who have flown in space, using a questionnaire we developed based on the scientific literature and first person accounts. All participants reported positive effects of being in space, but the degree of change varied widely, and some experiences were particularly common. Three of our five predicted attitude-behavior relationships were supported by the data. Response patterns did not vary according to demographics or time in space. Cluster analysis yielded two groups of participants. One group was generally more reactive and also placed a higher priority on perceptions of space than did the other group. We conclude that positive experiences are common among space travelers and seem to cluster into meaningful patterns that may be consequential for Mars missions. We consider the possible selection, training, and monitoring issues raised by our findings.  相似文献   

14.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

15.
Numerous papers are devoted to studying the motion of a system (coupling) of two bodies in the Earth’s satellite orbit ([1–4] and others). The problem on the planar inertial motion of three bodies, coupled by a non-extensible weightless string having the form of an unfastened chain, is considered in the paper. Such a configuration can be represented, for example, by a system of two coupled spacecraft rotating around their common center of mass (in order to simulate the gravity force) in long-term space missions, when the third body (the lift) is located on a connecting cable. The bodies are considered to be the material points (particles).  相似文献   

16.
ASSESS II (Airborne Science/Spacelab Experiments System Simulation) was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.  相似文献   

17.
This paper first gives an overview of the applications of micro-electro-mechanical systems (MEMS) in space. Microsystems are advertised for their extremely low size and mass, along with their low power consumption and in some case their improved performances. Examples of actual flown MEMS and future missions relying on MEMS are given. Microsystems are now enjoying a dynamic and expanding interest in the space community. This paper intends to give an idea about the next step in miniaturization, since the microelectronic industry is already looking at nano-electro-mechanical systems (NEMS) driven by the more-than-Moore philosophy. We show that the impact of nanosystems should not be reduced at a homothecy in size, weight and power consumption. New forces appear at this scale (Casimir force…) which have to be considered in the system design. The example of a nano-mechanical memory is developed. We also show that performances of nanosystems are not systematically better than their microscopic counterparts through the study of the impact of dimension reduction on an accelerometer resolution and sensitivity. We conclude with the idea that nanosystems will find their greatest applications in distributed intelligent networks that will allow new mission concepts for space exploration.  相似文献   

18.
To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110?nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ~7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (~3-log reduction in viability for "UV-Mars," and ~4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.  相似文献   

19.
A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.  相似文献   

20.
Shuvalov  V. A.  Kochubei  G. S.  Priimak  A. I.  Gubin  V. V.  Tokmak  N. A. 《Cosmic Research》2003,41(4):413-423
A methodology of the physical modeling of radiation electrification of the leeward surfaces of the materials used to construct space vehicles by auroral electrons, when the vehicles are flown supersonically around by the ionospheric plasma at low and middle heights, is developed. Based on laboratory modeling, numerical experiments, and in situ observations, the dependencies of charging levels and equilibrium potentials on the ratio of the auroral electron density to the positive ions in the near wake behind the body and in the undisturbed plasma are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号