首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
流向涡与涡轮叶栅二次流相互作用研究   总被引:2,自引:0,他引:2  
研究有效的流动控制手段,降低涡轮内部二次损失,对于小展弦比涡轮的气动设计具有重要意义。利用涡发生器在叶栅入口前产生流向涡,通过试验和数值方法探讨这种基于旋涡相互作用的流动控制方法对涡轮平面叶栅二次流动的作用效果,并对不同流向涡情况做对比分析。结果表明:流向涡对涡轮叶栅内部流动会产生较为显著的影响,从而影响叶栅的性能,当所产生流向涡强度和位置较为合理时,有可能通过流向涡与二次流的相互作用达到较大幅度降低二次流损失的目的。  相似文献   

2.
叶片前缘形状对涡轮气动性能的影响   总被引:4,自引:0,他引:4  
采用Bezier曲线控制涡轮叶片前缘形状由圆弧形改为非圆弧形,用数值计算方法研究涡轮叶片前缘形状对其气动性能影响.首先以基元叶型为研究基础,数值模拟分析、比较不同基元叶型前缘形状在不同攻角下对涡轮叶栅性能影响.对于正常运行的攻角范围(-15°~+10°),由于非圆弧形前缘表面曲率半径增大较缓,减小了前缘表面流动的法向压力梯度,抑制过度膨胀,减小由摩擦力引起的能量耗散,损失减小,且非圆弧形曲率半径越大,提高性能效果相对越好.而在非设计工况的大攻角条件下,前缘曲率半径缓慢增大将导致叶型分离更严重,损失相对增加.其次以某5级低压涡轮作为验证实例,数值研究分析认为,非圆弧形前缘形状可改善叶片前缘流动特性,提高涡轮效率,但对于远离设计点的非设计工况,由于气流攻角的大幅度改变,会带来涡轮气动性能的负面影响.   相似文献   

3.
高负荷涡轮叶栅气动性能试验   总被引:1,自引:0,他引:1  
在环形涡轮叶栅低速风洞上,对某型高负荷涡轮静叶栅进行了吹风试验.应用五孔球头测针,详细测量了在三个冲角下由栅前至栅后7个横截面内气流参数沿叶高和节距的分布.试验结果表明,沿叶高变负荷结合叶片弯曲,在满足高负荷要求的条件下能够控制边界层的集聚、转捩与分离.在主流区采用前加载叶型,保证叶片能承担高负荷.在两个端壁区采用后部加载叶型,并通过叶片正弯进一步降低气动负荷,从而减小端壁横向压力梯度,削弱端壁横向二次流.正、负冲角仅影响叶片前缘吸力面或压力面的静压分布,引起气动负荷的增加与减小.研究的高负荷涡轮叶栅具有良好的冲角适应性.   相似文献   

4.
前缘形状对涡轮叶栅损失影响的机理   总被引:2,自引:0,他引:2  
通过改变前缘几何形状来分析其在设计攻角、非设计攻角下前缘附近的流动机理.研究结果表明:在宽工况范围内椭圆型前缘表现出了较优越的性能,不但在设计攻角下能很好抑制吸力峰的强度以避免前缘分离泡的产生,而且在较宽的攻角范围内都能保证前缘附近边界层状态基本不变.当正攻角很大时,不同前缘形状前缘附近都会出现分离泡,且会诱导边界层发生转捩,但椭圆型前缘边界层开始发生转捩的攻角会向大攻角方向移动.在20°攻角下,椭圆型前缘叶型的损失相比基准叶型下降了7%左右.进口湍流度的增加不会改变吸力峰的强度但可以减弱前缘分离泡的强度.  相似文献   

5.
在航空涡轮叶片设计中,减少流动损失对改善涡轮叶片性能具有十分重要的意义。本文介绍了一种连续伴随方法在涡轮叶片优化设计中的应用,通过对某低展弦比涡轮叶片的根壁外形进行优化来减少二次流损失。首先通过改变叶高方向的安装角分布使得气流出口偏转角逼近目标分布,以此验证粘性伴随方法的精确性和有效性。其次,在优化二次流损失时,设计目标选取为叶片通道出口的熵增,同时满足出口流动偏转角约束。最后,分析讨论了叶片根壁外形变化对减小二次流损失及二次动能的影响。结果表明:该优化设计能有效地减小二次动能,从而提高叶片的效率。  相似文献   

6.
1引言在叶轮机械叶栅内流动控制中,可以通过在叶片吸力面、端壁上安装翼刀或隔片,控制二次流的发展,降低二次流损失,其中将翼刀加装在吸力面上的控制方式即为吸力面翼刀控制技术。吸力面翼刀主要是通过阻断端壁附面层和叶片吸力面附面层近端壁处低能流动沿吸力面的展向迁移来对  相似文献   

7.
为了最大程度地降低端区二次流对涡轮叶栅带来的流动损失,对某典型低压涡轮叶栅引入水滴型前缘修型结构并进行设计参数优化。首先使用控制变量法研究单一设计参数变化对流动控制效果的影响;然后基于均匀设计法,对不同设计参数组合的水滴型前缘修型结构的流动控制效果进行数值模拟,获取控制端区二次流最优的设计方案。结果表明:控制变量优化下的最佳设计方案可以使总压损失降低6.1%;均匀设计优化下的最佳设计方案可以使总压损失降低8.61%。与控制变量法相比,均匀设计法得到的水滴型前缘修型优化结构能够更大程度地降低前缘马蹄涡强度,延后通道涡到达吸力面的位置,减小通道涡对主流的影响范围,进而从流动机理层面证实了均匀设计法优化水滴型前缘修型的可行性。  相似文献   

8.
陈浮  杨科  王松涛  王仲奇 《推进技术》2004,25(2):126-129
对具有前缘逆主流不同位置喷射冷气的大转折角气冷涡轮直叶栅进行了详细的流道内部测量。实验结果表明,冷气喷射改变了叶片型面静压分布规律;前缘不同位置喷气对流道内部通道涡和端壁附面层的影响差异较大;不同冷却方案导致损失增加的机理不同,损失增加量级也有所不同。  相似文献   

9.
涡轮轮毂封严冷气对主流影响实验研究   总被引:3,自引:0,他引:3  
本文针对不同冷气量和不同冷气喷入角组合工况下涡轮轮毂封严冷气对主流影响进行了实验研究,在一列低速涡轮平面叶栅上对不同工况下的叶栅出口流场、通道流场进行了测试。实验结果表明:在1.0%~1.8%冷气量下,1.0%冷气量沿45°喷入对主流影响最小,涡轮叶栅气动性能最优。  相似文献   

10.
叶栅二次流旋涡结构与损失分析   总被引:1,自引:2,他引:1  
采用三维粘性程序对某型动力涡轮的第一级进行了数值模拟, 模拟结果捕捉到了该涡轮级叶栅的内部流的流动细节, 展示了涡轮叶栅端壁和型面流动及叶栅通道内的三维流动结构.通过对叶栅中的二次流现象和流动损失机理的分析, 揭示了该涡轮级叶栅通道内二次流旋涡结构(马蹄涡、通道涡、壁角涡、尾迹涡、泄漏涡等)的演变过程, 以及旋涡结构对损失分布的影响.   相似文献   

11.
轮毂封严气体对高压涡轮二次流动的影响   总被引:5,自引:5,他引:5       下载免费PDF全文
1引言目前,国内外对封严冷气掺混已有一定的研究,宾夕法利亚大学的Mclean研究了转静子封严腔冷气孔位置以及冷气流量等对主流的影响,发现了很小一部分冷气也会对涡轮的性能和涡轮出口条件产生很大的影响[1,2]。Jakoby等人对涡轮内部转静子封严腔和主流通道中的流动进行了数值模  相似文献   

12.
冲角变化对涡轮叶栅内间隙流动的影响   总被引:1,自引:0,他引:1  
航空发动机涡轮工作效率的损失很大程度在于涡轮叶尖间隙损失,而叶尖区域泄漏流动的形成机理强烈地依赖于叶栅的运行工况,因此有必要研究来流冲角的变化对涡轮叶栅内间隙流动的影响。为此在低速风洞中对三套不同叶片积迭线形状的矩形叶栅进行了实验,测量了间隙内以及沿流动方向8个横截面的气动参数。通过对实验结果的分析和讨论,认为随着冲角的增加叶顶压差与端壁流道横向压力梯度增大,同时叶栅的总流动损失也随之增加。  相似文献   

13.
涡轮叶栅外换热系数计算   总被引:6,自引:1,他引:5  
曾军  卿雄杰 《航空动力学报》2008,23(7):1198-1204
采用求解三维雷诺平均Navier-Stokes(N-S)方程和带转捩模型的二方程Shear stress transport(SST)湍流模型,完成了MARKⅡ,VKI两个高压涡轮导叶叶栅及一个VKI高压涡轮动叶叶栅的外换热系数计算.计算结果与试验数据的对比表明,发展的带转捩模型的数值方法明显地提高了外换热系数的计算精度.   相似文献   

14.
用端壁造型减小涡轮叶栅二次流损失的数值研究   总被引:5,自引:9,他引:5       下载免费PDF全文
分别对常规叶栅、下端壁上凸和下端壁下凹叶栅的流场进行了详尽的数值模拟,通过将下端壁上凸和下端壁下凹叶栅中的通道涡的发生、发展过程与常规叶栅进行对比分析,对非轴对称端壁造型减小涡轮叶栅二次流损失的机理进行了初步的探讨。结果表明:下端壁上凸叶栅出口处的总压损失比常规叶栅下降了4.2%,下端壁下凹叶栅出口处的总压损失比常规叶栅增加了11.9%;在下端壁上凸叶栅中,下通道涡的形成比常规叶栅和下端壁下凹叶栅滞后,失去了充分发展的"机会"。这是非轴对称端壁造型能够减小涡轮叶栅二次流损失的根本原因。  相似文献   

15.
二次流动对气冷涡轮叶栅流场的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
针对典型跨声速高压涡轮叶型平面叶栅吸力面单排孔气膜冷却,采用数值模拟方法,比较分析了加入气膜冷却前后流场变化。结果表明,由于二次流动的影响,加入气膜冷却以后吸力面后部接近下壁面处没有受到冷气保护而直接暴露于主流高温燃气,在实际高压涡轮中将极大的降低叶片寿命。没有气膜冷却情况下,吸力面接近下壁面处边界层仍有可能因受到二次流动的影响发生转捩;加入气膜冷却情况下,气膜孔中心位置下游边界层由于射流和主流的相互作用将转变为湍流边界层,而由于孔间距的影响,只有射流和主流充分掺混以后才能影响到整个叶片的范围。  相似文献   

16.
Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine(LPT) cascade.All of the measurements were conducted in both the presence and absence of incoming wakes,and numerical analysis was performed to elucidate the flow mechanism.With increasing Reynolds number, the influence of the incoming wakes on suppressing the secondary flow gradually increased owing to the greater influence of incoming ...  相似文献   

17.
针对低展弦比涡轮叶栅端壁区亚声速流动及换热,采用基于线性涡黏假设的V2F模型开展了数值模拟.结果表明:涡轮叶栅流动中存在马蹄涡、通道涡、压力侧角涡、吸力侧角涡等多种复杂涡系结构,其中马蹄涡与通道涡是涡轮叶栅二次损失的主要来源.端壁换热与马蹄涡及通道涡强度及位置直接相关,并呈现明显的分区特征.端壁极限流线结果显示,V2F模型模拟的端壁单马蹄涡分离线与实验结果吻合,优于SST (shear stress transport)k-ω模型模拟的端壁双马蹄涡分离线.V2F模型引入了新的湍流尺度,在马蹄涡及通道涡位置、端壁静压损失系数分布、叶栅出口总压损失分布及端壁Standon数分布等方面均与实验结果吻合较好,对叶栅气动损失及端壁换热有良好的预测能力.  相似文献   

18.
In modern gas turbines, rim seal located between the stator-disc and rotor-disc is used to prevent hot-gas ingestion into the inner stage-gap of high pressure turbine. However, the purge flow supplied to the cavity through the rim seal interacts with the main flow, producing additional aerodynamic loss due to the mixing process which plays a significant role in the formation, development and evolution of downstream secondary flow. In this paper, a set of cascade representative of low aspect ratio turbine is selected to numerically investigate the influence of upstream cavity purge flow on the hub secondary flow structure and aerodynamic loss. Cascade with/without upstream cavity and four different purge mass flow rates are all taken into account in this simulation. Then, a deep insight into the loss mechanism of interaction between purge flow and main flow is gained. The results show that the presence of cavity and purge flow has a significant impact on the main flow which not only changes the vortex structure in both the passage and upstream cavity, but also alters the cascade exit flow angle distribution along the spanwise. Moreover, aerodynamic loss in the cascade rises with the increase of purge flow rate while the sealing effect is also enhanced. Therefore, the effect of upstream cavity purge flow must be considered in the process of turbine aerodynamic design. What is more, it is necessary to minimize the purge flow rate in order to reduce aerodynamic loss on the premise of satisfying cooling requirements.  相似文献   

19.
通过实验测量了不同雷诺数(80000~260000)情况下整个涡轮机匣腔内的压力分布,总结了涡轮机匣腔内压力分布和流动阻力特性.实验结果表明:①在腔二到腔三的过渡区域,压力下降非常明显,压力损失较大;②随着雷诺数的增大,静压系数有增大的趋势,增大的幅度在19%以内;③随着雷诺数的增大,总压损失系数变化较为平稳,变化范围在10%以内.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号