首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
航空发动机主轴轴承故障诊断   总被引:1,自引:0,他引:1  
赵鲁宁  孙颖 《飞机设计》2010,30(2):46-50
某型航空发动机的主轴轴承由于频繁出现早期失效而引起发动机故障,因此,对滚动轴承进行状态监测和故障诊断具有重要的实际意义。针对常规方法难以准确分析非平稳信号的局限性,本文研究了基于小波分析的滚动轴承故障诊断方法,通过滚动轴承外表面损伤的仿真信号进行小波包频谱分析,验证了基于小波分析的滚动轴承故障诊断方法是可靠、准确的,可以应用于航空发动机主轴轴承的状态监测和故障诊断。  相似文献   

2.
基于小波包分析方法的航空发动机滚动轴承故障诊断   总被引:4,自引:0,他引:4  
将小波包分析技术引入到航空发动机滚动轴承故障诊断的应用研究中,给出了基于小波包分析的滚动轴承故障特征提取方法:应用小波包分解与重构算法分离出了滚动轴承的故障特征频率,识别出了滚动轴承的故障类型。通过对实际航空发动机滚动轴承故障信号的分析表明,该方法可以有效地检测和诊断航空发动机的滚动轴承故障。  相似文献   

3.
针对某型航空发动机构建了转子-滚动轴承动力学仿真模型,并利用该模型构造了三种发动机故障样本.研究中采用松散型的小波神经网络,先对构造的三种故障信号进行小波包特征分析,提取其能量特征向量作为神经网络的输入,再采用改进的BP神经网络分类器进行发动机故障模式识别.仿真结果表明,基于小波神经网络的信息融合技术用于发动机的故障诊断是可行的和有效的.  相似文献   

4.
小波变换在航空发动机故障诊断中的应用   总被引:3,自引:1,他引:3  
论述了小滤变换在航空发动机故障诊断--检测特征信号和分离信号的高、低频成分中的应用,小波变换是采用可变窗口的积分变换,是一种多分辨率的时频分析方法,应用在振动信号处理较传统分析方法优越。  相似文献   

5.
6.
郑红  周雷  杨浩 《航空动力学报》2015,30(12):3035-3042
为了更准确地诊断滚动轴承故障,提出了一种基于小波包分析与多核学习的滚动轴承故障诊断方法.该方法首先对振动信号进行3层小波包分解,将振动信号分解为不同频带的信号,提取各频带的相对能量特征,构建特征向量;然后采用多核学习算法从训练样本集中学习核函数与分类器;最后使用训练出的分类器识别滚动轴承故障类型.为了验证方法的有效性,进行了滚动轴承故障诊断实验,实验结果表明该方法的故障诊断准确率达到98.25%,与传统的基于小波包与支持向量机的滚动轴承故障诊断方法相比,其故障诊断准确率更高,同时由于避免了核函数的选择问题,该方法更便于实际应用.   相似文献   

7.
使用成熟的旋转机械振动信号频谱分析方法,对采集到的多台航空发动机试车振动信号进行分析,找出能反应出发动机转子不对中、转子不平衡和转静件碰磨3种故障频谱特征的振动信号.再使用小波包将信号分解为不同的频段,之后分别计算能反应出故障信息的特征频段的能量,将它们组成用来区分上述3种故障的特征向量,为以后的航空发动机故障的模式识别做准备.  相似文献   

8.
钟也磐  陈卫  杜炜  巩孟林 《推进技术》2017,38(5):1140-1146
针对航空发动机减速器一级齿轮毂故障诊断问题,提出了一种基于小波包和CHI-LMD(三次Hermite插值-局部均值分解)的加强谱峭度的故障诊断方法。在用AR(自回归)参数模型对原始信号进行降噪后,首先采用小波包对信号进行分解,并结合谱峭度找出特征频带,继而用CHI-LMD对特征频带进行再分解获得若干PF分量,最后对获得的PF分量计算谱峭度作为故障识别参数。利用此方法对10组待识别信号的诊断结果表明,该方法能有效识别减速器一级齿轮毂故障,在不拆卸发动机的情况下实现了对目标的诊断。  相似文献   

9.
小波网络在某型航空发动机故障诊断中的应用   总被引:9,自引:4,他引:5  
分析了用小波网络替代神经网络进行模型辨识的优点,在误差反向传播算法(Error back prop-agation)的基础上,结合小波分析理论,设计了一种小波网络算法.通过对某型航空发动机的仿真实验,小波网络能够及时准确地预测出发动机的输出.同时利用小波变换对残差的分析可以有效地检测出系统所发生的故障.   相似文献   

10.
基于谐波小波包和SVM的滚动轴承故障诊断方法   总被引:1,自引:0,他引:1  
针对滚动轴承故障诊断问题开展研究,设计了基于谐波小波包和支持向量机(SVM)的新型诊断方法.与传统的时频特征提取方法相比,谐波小波包具有盒状频谱和无限细分的优势.首先对滚动轴承的振动数据进行谐波小波包分解,利用各频段的小波分解系数计算特征能量,归一化之后作为特征向量,为设计的多类SVM模型提供训练样本和测试样本.利用SVM的非线性映射能力,将三个二分类器相组合设计了基于二叉树的多类SVM模型,实现了对滚动轴承的故障诊断.最后,利用Case Western Reserve University电气工程实验室的滚动轴承试验台的振动数据对设计的诊断方法进行了验证.结果表明,设计的诊断方法比传统的方法具有更高的准确率.  相似文献   

11.
针对工程中航空滚动轴承实时状态监测的需要,提出了基于标准化欧氏距离的多特征融合评估方法。首先,进行了航空滚动轴承故障模拟试验,引入了故障灵敏度的定量评价指标,对融合前后特征的故障灵敏度进行了分析;在此基础上,将所提方法与主分量分析、支持向量数据描述和支持向量分布估计方法相比较;最后,进行了轴承疲劳加速试验,将所提融合方法应用于航空滚动轴承状态监测。试验表明:相比于主分量分析、支持向量数据描述和支持向量分布估计,基于标准化欧氏距离的融合值的故障灵敏度更高;其对不同类型、不同阶段的航空滚动轴承故障更加灵敏,相比于有效值更适合作为航空滚动轴承状态监测的指标。   相似文献   

12.
基于小波和模糊神经网络的涡喷发动机故障诊断   总被引:15,自引:3,他引:15       下载免费PDF全文
杨建国  孙扬  郑严 《推进技术》2001,22(2):114-117
提出了一种基于小波和模糊神经网络的涡喷发动机故障诊断方法。即利用小波变换获取特征域,取特征域上的峰值因子、脉冲因子、裕度因子、偏态因子、峭度因子及频谱最大值作为神经网络的输入,并对神经网络的输入、输出进行模糊化处理,以神经网络进行诊断。将该方法成功地应用于某型涡喷发动机的故障诊断,结果表明,该方法诊断效果明显。  相似文献   

13.
张顶成  于德介  李星 《航空动力学报》2015,30(12):3051-3057
针对轴承早期故障诊断困难的问题,提出了基于信号共振稀疏分解与品质因子可调小波重构的滚动轴承故障诊断方法.该诊断方法首先对轴承故障信号进行共振稀疏分解获得高共振分量和低共振分量;然后对低共振分量进行品质因子可调小波重构,并结合峭度分析,筛选出最佳分析信号;最后对最佳分析信号进行希尔伯特解调分析,从而提取滚动轴承故障特征信息.通过对仿真信号和实际故障信号进行分析,该方法能有效提取轴承故障信号中的冲击成分,凸显故障特征.   相似文献   

14.
侯胜利  李应红  尉询楷 《推进技术》2006,27(2):154-157,170
1引言目前,国内外已发展了多种应用于航空发动机的智能故障诊断方法,如专家系统方法、神经网络方法,以及新近提出的基于支持向量机的诊断方法。但这些方法需要有足够的已知故障模式的训练样本才能发挥出优异的性能,而且算法实时性较差,难以满足快速在线诊断的要求[1]。传统的基  相似文献   

15.
针对航空发动机中介轴承故障信号难于识别的特点,提出了一种深度梯度提升模型(Deep-GBM)对振动信号特征进行逐层学习以提高分类模型的准确率。开展某型航空发动机中介轴承故障模拟实验,并采用经验模式分解(EMD)方法对采集的振动信号进行分解,提取内蕴模式函数(IMF)分量非线性动力学参数样本熵作为原始故障特征。采用Deep-GBM对中介轴承内环故障、内环和滚动体综合故障、正常、滚棒剥落、滚棒划伤五种不同状态进行识别。实验结果表明,所提出的Deep-GBM故障诊断准确率达到87%,相对于传统的机器学习模型准确率最高提升了28%,并具有良好的泛化能力。   相似文献   

16.
采用改进的小波分解和重构算法与包络分析相结合的方法,提取滚动轴承振动信号的故障特征频率。改进的小波分解和重构方法避免了 Mallat 算法频率混淆的缺陷,通过对重构信号特定频带进行包络分析,更加准确地提取了滚动轴承的故障特征频率。通过对无故障滚动轴承和内圈、外圈有故障的滚动轴承振动信号的分析,说明这种方法能够有效诊断滚动轴承的故障,并将该方法成功应用于某型航空发动机主轴承故障诊断。  相似文献   

17.
周剑波  鲁峰  黄金泉 《推进技术》2011,32(1):140-145
为了改善对航空发动机气路部件故障诊断能力,提出了一种基于灰色关联分析的两层诊断方法。该方法首先利用粒子群算法优化各蜕化程度下灰色关联加权指数,构建标准故障序列,利用灰色关联分析进行第一层定性诊断,再优选故障模式利用灰色斜率关联分析方法进行二次诊断,得到了气路部件故障诊断结果。仿真表明,改进二次灰色关联分析诊断方法比单层诊断方法结构更简单,计算量小,更适合于较多传感器的发动机诊断系统,比经验灰色关联分析方法诊断精度更高。  相似文献   

18.
基于小波分析的航空发动机故障诊断方法研究   总被引:4,自引:3,他引:4  
小波变换是一种多分辨率的时频分析方法,应用在振动信号处理、故障诊断方面较传统方法优越。在阐述小波分析理论基础上,对某型航空发动机的振动信号进行分析,采用小波分解和信号重构的方法,提取了噪声掩盖下振动信号中的故障信息,根据航空发动机整机振动的典型故障特征频率,判断该发动机是否发生故障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号