首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
‘‘Tian Tuo 1'(TT-1) nano-satellite is the first single-board nano-satellite that was successfully launched in China. The main objective of TT-1 is technology demonstration and scientific measurements. The satellite carries out the significant exploration of single-board architecture feasibility validation, and it is tailored to the low-cost philosophy by adopting numerous commercialoff-the-shelf(COTS) components. The satellite is featured with three-axis stabilization control capability. A pitch bias momentum wheel and three magnetic coils are adopted as control actuators.The sun sensors, magnetometers and a three-axis gyro are employed as the measurement sensors.The quaternion estimator(QUEST) and unscented Kalman filter(UKF) method are adopted for the nano-satellite attitude determination. On-orbit data received by ground station is conducted to analysis the performance of attitude determination and control system(ADCS). The results show that the design of ADCS for TT-1 is suitable, robust and feasible.  相似文献   

2.
In this paper, we consider the coordinated attitude control problem of spacecraft formation with communication delays, model and disturbance uncertainties, and propose novel synchronized control schemes. Since the attitude motion is essential in non-Euclidean space, thus, unlike the existing designs which describe the delayed relative attitude via linear algorithm, we treat the attitude error and the local relative attitude on the nonlinear manifold-Lie group, and attempt to obtain coupling attitude information by the natural quaternion multiplication. Our main focus is to address two problems:1) Propose a coordinated attitude controller to achieve the synchronized attitude maneuver, i.e., synchronize multiple spacecraft attitudes and track a time-varying desired attitude; 2) With known model information, we achieve the synchronized attitude maneuver with disturbances under angular velocity constraints. Especially, if the formation does not have any uncertainties, the designer can simply set the controller via an appropriate choice of control gains to avoid system actuator saturation. Our controllers are proposed based on the Lyapunov-Krasovskii method and simulation of a spacecraft formation is conducted to demonstrate the effectiveness of theoretical results.  相似文献   

3.
Space Technology Experiment and Climate Exploration(STECE) is a small satellite mission of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have been loaded on the STECE satellite to test the new star tracker's measurement performance. However,there is no autonomous precession–nutation correction function for the test star tracker,which causes an apparent periodic deflection in the inter-boresight angle between the two star trackers with respect to each other of up to ±500 arcsec,so the precession and nutation effect needs to be considered while assessing the test star tracker. This paper researches on the precession–nutation correction for the test star tracker's attitude measurement and presents a precession–nutation correction method based on attitude quaternion data. The periodic deflection of the inter-boresight angle between the two star trackers has been greatly eliminated after the precession and nutation of the test star tracker's attitude data have been corrected by the proposed method and the validity of the proposed algorithm has been demonstrated. The in-flight accuracy of the test star tracker has been assessed like attitude noise and low-frequency errors after the precession–nutation correction.  相似文献   

4.
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.  相似文献   

5.
In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators(CIs) are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator(HI)through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system's reliability.  相似文献   

6.
Sensor selection and optimization is one of the important parts in design for testability. To address the problems that the traditional sensor optimization selection model does not take the requirements of prognostics and health management especially fault prognostics for testability into account and does not consider the impacts of sensor actual attributes on fault detectability, a novel sensor optimization selection model is proposed. Firstly, a universal architecture for sensor selection and optimization is provided. Secondly, a new testability index named fault predictable rate is defined to describe fault prognostics requirements for testability. Thirdly, a sensor selection and optimization model for prognostics and health management is constructed, which takes sensor cost as objective function and the defined testability indexes as constraint conditions. Due to NP-hard property of the model, a generic algorithm is designed to obtain the optimal solution. At last, a case study is presented to demonstrate the sensor selection approach for a stable tracking servo platform. The application results and comparison analysis show the proposed model and algorithm are effective and feasible. This approach can be used to select sensors for prognostics and health management of any system.  相似文献   

7.
《中国航空学报》2016,(3):722-737
Agile satellites are of importance in modern aerospace applications,but high mobility of the satellites may cause them vulnerable to saturation during attitude maneuvers due to limited rating of actuators.This paper proposes a near minimum-time feedback control law for the agile satellite attitude control system.The feedback controller is formed by specially designed cascaded sub-units.The rapid dynamic response of the modified Bang–Bang control logic achieves the near optimal property and ensures the non-saturation properties on three-axis.To improve the dynamic performance,a model reference control strategy is proposed,in which the on-line near optimal attitude maneuver path is generated by the cascade controller and is then tracked by a nonlinear back-stepping controller.Furthermore,the accuracy and the robustness of the control system are achieved by momentum-based on-line inertial identification.The rapid attitude maneuvering can be applied for tasks including the move to move case.Numerical simulations are conducted to verify the effectiveness of the proposed control strategy in terms of the saturation-free property and rapidness.  相似文献   

8.
《中国航空学报》2016,(3):831-842
During radial–axial ring rolling process,cooperative strategy of the radial–axial feed is critical for dimensional accuracy and thermo mechanical parameters distribution of the formed ring.In order to improve the comprehensive quality of the ring parts,response surface method(RSM) is employed for the first time to optimize the cooperative feed strategy for radial–axial ring rolling process by combining it with an improved and verified 3D coupled thermo-mechanical finite element model.The feed trajectory is put forward to describe cooperative relationship of the radial–axial feed and three variables are designed based on the feed trajectory.In order to achieve multiobjective optimization,four responses including thermo mechanical parameters distribution and rolling force are proposed.Based on the FEM results,RSM is used to establish a response model to depict the function relationship between the objective response and design variables.Through this approximate model,effects of different variables on ring rolling process are analyzed connectedly and optimal feed strategy is obtained by resorting to the optimal chart specific to a constraint condition.  相似文献   

9.
Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.  相似文献   

10.
Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.  相似文献   

11.
Pico-satellite Autonomous Navigation with Magnetometer and Sun Sensor Data   总被引:1,自引:0,他引:1  
This article presents a near-Earth satellite orbit estimation method for pico-satellite applications with light-weight and low-power requirements. The method provides orbit information autonomously from magnetometer and sun sensor, with an extended Kalman filter (EKF). Real-time position/velocity parameters are estimated with attitude independently from two quantities: the measured magnitude of the Earth’s magnetic field, and the measured dot product of the magnetic field vector and the sun vector. To guarantee the filter’s effectiveness, it is recommended that the sun sensor should at least have the same level of accuracy as magnetometer. Furthermore, to reduce filter’s computation expense, simplification methods in EKF’s Jacobian calculations are introduced and testified, and a polynomial model for fast magnetic field calculation is developed. With these methods, 50% of the computation expense in dynamic model propagation and 80% of the computation burden in measurement model calculation can be reduced. Tested with simulation data and compared with original magnetometer-only methods, filter achieves faster convergence and higher accuracy by 75% and 30% respectively, and the suggested simplification methods are proved to be harmless to filter’s estimation performance.  相似文献   

12.
DOA estimation for attitude determination on communication satellites   总被引:1,自引:1,他引:0  
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.  相似文献   

13.
Electrochemical machining (ECM) is an effective and economical manufacturing method for machining hard-to-cut metal materials that are often used in the aerospace field. Cathode design is very complicated in ECM and is a core problem influencing machining accuracy, especially for complex profiles such as compressor blades in aero engines. A new cathode design method based on iterative correction of predicted profile errors in blade ECM is proposed in this paper. A math-ematical model is first built according to the ECM shaping law, and a simulation is then carried out using ANSYS software. A dynamic forming process is obtained and machining gap distributions at different stages are analyzed. Additionally, the simulation deviation between the prediction profile and model is improved by the new method through correcting the initial cathode profile. Further-more, validation experiments are conducted using cathodes designed before and after the simulation correction. Machining accuracy for the optimal cathode is improved markedly compared with that for the initial cathode. The experimental results illustrate the suitability of the new method and that it can also be applied to other complex engine components such as diffusers.  相似文献   

14.
It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.  相似文献   

15.
Circular thin-plate electrostatic sensors are promising in gas path monitoring due to their advantages of non-intrusiveness and easy installation. The spatial sensitivity and filtering effect are two important performance parameters. In this paper, an analytically mathematical model of induced charge on a circular thin-plate electrode is first derived. Then the spatial sensitivity and filtering effect of the circular electrostatic sensor are investigated by numerical calculations. Finally,experimental studies are performed to testify the theoretical results. Both theoretical and experimental results demonstrate that circular thin-plate electrostatic sensors act as a low-pass filter in the spatial frequency domain, and both the spatial filtering effect and the temporal frequency response characteristics depend strongly on the spatial position and velocity of the charged particle. These conclusions can provide guidelines for the optimal design of circular thin-plate electrostatic sensors.  相似文献   

16.
17.
修正Rodrigues参数在飞行器定姿中的应用(英文)   总被引:2,自引:0,他引:2  
There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE, and simulation results demonstrate the efficacy of the presented algorithm.  相似文献   

18.
A relative position and attitude coupled controller is proposed for rendezvous and docking between two docking ports located in different spacecraft. It is concerned with servicing to a tumbling non-cooperative target spacecraft in arbitrary orbit subjected to external disturbances.By considering both kinematic and dynamical coupled effects of relative rotation on relative translation, a coupled dynamic model is established to represent the relative motion of docking port on target spacecraft with respect to another on the service spacecraft. The spacecraft control is based on the second order sliding mode algorithm of super twisting(ST). It is schemed to manipulate the relative position and attitude synchronously. A formal proof of the finite time convergence property of the closed-loop system is derived theoretically by the second method of Lyapunov. Numerical simulations with the designed ST controller are presented to validate the analytic analysis by contrast with the twisting control algorithm. Simulation results demonstrate that the proposed relative position and attitude integrated controller is characterized by high precision, strong robustness and high reliability.  相似文献   

19.
This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to identify the parameters based on the sources and features of its unknown parameters.Based on the mathematical model of the aerial vehicle acquired by modeling and identifcation,a design for the structural parameters of the attitude control system is carried out,and the results of the attitude control flaps are verifed by simulation experiments and flight tests of the aerial vehicle.Results of the mathematical simulation and flight tests show that the mathematical model acquired using parameter identifcation is comparatively accurate and of clear mechanics,and can be used as the reference and basis for the structural design.  相似文献   

20.
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号