首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel-based superalloys are widely employed in modern aircraft engines because of their excellent material characteristics, particularly in the fabrication of film cooling holes. How-ever, the high machining requirement of a large number of film cooling holes can be extremely chal-lenging. The hybrid machining technique of tube electrode high-speed electrochemical discharge drilling (TEHECDD) has been considered as a promising method for the production of film cooling holes. Compared with any single machining process, this hybrid technique requires the removal of more complex machining by-products, including debris produced in the electrical discharge machin-ing process and hydroxide and bubbles generated in the electrochemical machining process. These by-products significantly affect the machining efficiency and surface quality of the machined prod-ucts. In this study, tube electrodes in different inner diameters are designed and fabricated, and the effects of inner diameter on the machining efficiency and surface quality of TEHECDD are inves-tigated. The results show that larger inner diameters could effectively improve the flushing condi-tion and facilitate the removal of machining by-products. Therefore, higher material removal efficiency, surface quality, and electrode wear rate could be achieved by increasing the inner diam-eter of the tube electrode.  相似文献   

2.
《中国航空学报》2016,(1):274-282
Ti60(Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining(ECM) is a promising technique that has several advantages, such as a high machining rate, and can be used on a wide range of difficult-to-process materials. In this paper, orthogonal experiments are conducted to investigate ECM of Ti60, with the aim of determining the influences of some electrochemical process parameters on the surface roughness. The most important parameter is found to be the frequency of the pulsed power supply. It is found that using suitably optimized parameters for ECM can greatly decrease the surface roughness of a workpiece. A surface roughness of approximately 0.912 lm can be obtained with the following optimal parameters: Na Cl electrolyte concentration 13wt%, voltage20 V, pulse frequency 0.4 k Hz, duty cycle 0.3, temperature 23 °C, and anode feed rate 0.5 mm/min.Furthermore, blisk blades have been successfully processed using these optimized parameters.  相似文献   

3.
《中国航空学报》2020,33(10):2782-2793
Superalloys are commonly used in aircraft manufacturing; however, the requirements for high surface quality and machining accuracy make them difficult to machine. In this study, a hybrid electrochemical discharge process using variable-amplitude pulses is proposed to achieve this target. In this method, electrochemical machining (ECM) and electrical discharge machining (EDM) are unified into a single process using a sequence of variable-amplitude pulses such that the machining process realizes both good surface finish and high machining accuracy. Furthermore, the machining mechanism of the hybrid electrochemical discharge process using variable-amplitude pulses is studied. The mechanism is investigated by observations of machining waveforms and machined surface. It is found that, with a high-frequency transformation between high- and low-voltage waveforms within a voltage cycle, the machining mechanism is frequently transformed from EDM to pure ECM. The critical discharge voltage is 40 V. When pulse voltages greater than 40 V are applied, the machining accuracy is good; however, the surface has defects such as numerous discharge craters. High machining accuracy is maintained when high-voltage pulses are replaced by low-voltage pulses to enhance electrochemical dissolution. The results indicate that the proposed hybrid electrochemical discharge process using variable-amplitude pulses can yield high-quality surfaces with high machining accuracy.  相似文献   

4.
A high friction coefficient and a low wear rate of contacted surfaces are essential elements to friction pairs between the stator and the rotor in ultrasonic motors. It has been shown that surface textures have a significant effect on improving the tribological performance of friction pairs.In this paper, microgroove arrays are introduced to the stator surface for improving the tribological performance of friction pairs between the stator and the rotor in ultrasonic motors. Microgrooves were fabricated on a phosphor bronze surface by through-mask electrochemical micromachining(TMEMM). Parameters, namely, the electrolyte inlet pressure, applied voltage, pulse duty cycle,and frequency, were varied to investigate their influences on the dimensions and morphology of the microgrooves. Results showed that the width and depth of the microgrooves were strongly affected by the applied voltage and frequency, while the morphology of the microgrooves was dependent on the electrolyte inlet pressure and the pulse duty cycle. Compared with a smooth surface, the friction coefficient increased from 0.245 to 0.334 and less abrasion was obtained when a surface was textured with microgrooves of which the width and depth were 185.6 and 57.6 lm,respectively. Microgroove arrays might play an important role in enhancing the performance of ultrasonic motors.  相似文献   

5.
In the current practice of multi-axis machining of freeform surfaces, the interface surface between the roughing and finishing process is simply an offset surface of the nominal surface. While there have already been attempts at minimizing the machining time by considering the kinematic capacities of the machine tool and/or the physical constraints such as the cutting force, they all target independently at either the finishing or the roughing process alone and are based on the simple premise of an offset interface surface. Conceivably, since the total machining time should count that of both roughing and finishing process and both of them crucially depend on the interface surface, it is natural to ask if, under the same kinematic capacities and the same physical constraints, there is a nontrivial interface surface whose corresponding total machining time will be the minimum among all the possible (infinite) choices of interface surfaces, and this is the motivation behind the work of this paper. Specifically, with respect to the specific type of iso-planar milling for both roughing and finishing, we present a practical algorithm for determining such an optimal interface surface for an arbitrary freeform surface. While the algorithm is proposed for iso-planar milling, it can be easily adapted to other types of milling strategy such as contour milling. Both computer simulation and physical cutting experiments of the proposed method have convincingly demonstrated its advantages over the traditional simple offset method.  相似文献   

6.
In the traditional machining process for diffusers, blades are easily deformed, and methods suffer from high tool wear and low efficiency. Electrochemical machining(ECM) possesses unique advantages when applied to these difficult-to-machine materials. In the ECM process, theflow field plays a crucial role. Here, an electrolyte flow mode that supplies uniform flow around the entire blade profile was adopted for electrochemical trepanning of diffusers. Various flow rates were employed to obtain the optimal flow field. Simulations were conducted using ANSYS software, and results indicated that increasing the flow rate substantially afforded a more uniform flowfield. A series of experiments was then performed, and results revealed that increasing the flow rate greatly improved both the machining efficiency and the surface quality of the diffusers. The maximum feeding rate of the cathode reached 4 mm/min, the blade taper of the concave part decreased to 0.02, and the blade roughness was reduced to 1.216 lm. The results of this study demonstrated the high feasibility of this method and its potential for machining other complex components for engineering applications.  相似文献   

7.
The radial ultrasonic rolling electrochemical micromachining(RUR-EMM) combined rolling electrochemical micromachining(R-EMM) and ultrasonic vibration was studied in this paper. The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG) was investigated and discussed by the finite element method. The multiphysics coupling model including flow field model, Joule heating model, material dissolution model and vibration model ...  相似文献   

8.
论述了采用电解加工大面积复杂凹凸型面的加工工艺可行性,通过优化加工参数,得到了具有代表性的加工时间与电流之间的关系曲线。研究结果表明:电解加工方法加工大面积复杂形状的结构有着较大优势,加工时间相比传统的机械加工大幅缩短,提高了加工效率,具有重要的应用价值。  相似文献   

9.
《中国航空学报》2023,36(2):388-401
Electrochemical milling is a modified technique of traditional electrochemical machining (ECM) that can be used to manufacture some helicopter transmission system parts. The use of rotary tools and an inner-jet electrolyte supply pattern can greatly improve the material removal rate (MRR) in a single pass. However, the feed speed is generally limited to minimize the tool wear. To increase the MRR, electrical discharge machining (EDM) is introduced into the electrochemical milling process. The tool rotation is employed to interrupt the discharge and the high-conductivity salt solution and non-pulsed direct current power supply are also adopted to increase ECM, eventually, a new machining method is proposed, which can be called rotary sinking electrochemical discharge milling (RSECD milling). The mechanism of it is explored in this study by analyzing the machined current, MRR, surface morphology, and tool wear at different applied voltages and feed speeds. Besides, the RSECD milling using the tool with a larger diameter is also conducted to further verify the effectiveness. In particular, the MRR can be increased by 742.5% when using the tool with a diameter of 20 mm at the applied voltage of 20 V.  相似文献   

10.
针对一种三元整体叶轮,采用B样条方法对叶片中性面上顶部和根部的两组数据点进行了插值曲线的反算,进而构造出直纹面形式的叶片中性面和叶片曲面;研究了在五坐标机床上采用球头棒铣刀侧铣加工叶轮时的刀位计算方法,给出了在UG环境下的叶轮曲面建模方法及其数控加工仿真步骤。  相似文献   

11.
A novel co-rotating electrochemical machining method is proposed for fabricating convex structures on the inner surface of a revolving part. The electrodes motion and material removal method of co-rotating electrochemical machining are different from traditional electrochemical machining. An equivalent kinematic model is established to analyze the novel electrodes motion,since the anode and cathode rotate in the same direction while the cathode simultaneously feeds along the line of centres. Acc...  相似文献   

12.
周明  汪叔淳 《航空学报》1992,13(2):107-109
 本文介绍了一个简单、实用的三坐标曲面加工数控自动编程系统IGPS。该系统在微机上运行,能够处理曲面的有界域加工、曲面间的过渡面加工、以及曲面的变步长、变行距加工等问题;系统具有交互式的图像辅助功能,便于用户使用。  相似文献   

13.
Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.  相似文献   

14.
钛基复合材料是一种典型的难加工材料,采用传统机械加工方法存在加工效率低和加工质量差等问题。利用电解加工技术,采用直径为10mm的管状阴极,对(TiB+TiC)/TC4复合材料进行电解钻孔加工试验研究。进行了(TiB+TiC)/TC4复合材料的电化学特性研究,测量了(TiB+TiC)/TC4复合材料在10%NaNO3溶液中的极化曲线和电流效率。探究了加工电压、电解液压力对加工精度的影响。结果表明,当加工电压为30V,电解液压力为0.6MPa时,电解钻孔可以在1mm/min的进给速度下稳定加工。当加工的盲孔深径比为3.06时,孔的圆度误差为41.1μm,锥度为0.4°,具有较高的加工精度。  相似文献   

15.
微细电解铣削加工模型及实验研究   总被引:1,自引:0,他引:1  
刘勇  朱荻  曾永彬  王少华  黄绍服 《航空学报》2010,31(9):1864-1871
 对微细电解铣削加工技术进行了深入研究。将分层加工技术应用到微细电解加工过程中,显著改善了加工稳定性;建立了微细电解铣削加工的数学模型;基于电化学刻蚀原理,在线制得直径小至10 μm的圆柱电极;分组实验并验证了加工模型中各参数如:电极直径、加工电压、电解液浓度、铣削层厚度等对微细电解铣削加工精度的影响。通过优化加工参数,成功加工出了深三角结构和四棱台微型腔,形状精度高,加工稳定性好。  相似文献   

16.
整体叶盘有良好的结构完整性、轻质化、装配环节少、装配精度高等优点,已被广泛应用于航空发动机中。根据整体叶盘的切削加工特征,将其简化为整体叶盘基准件,从数控编程和加工技术两方面实现整体叶盘的高质量加工。首先,利用Hyper MILL软件对整体叶盘基准件进行数控编程,优化获得理想的刀具路径,保证高效高质量的零件加工。然后,利用DMU-70V五轴加工中心对钛合金TC4整体叶盘基准件进行切削加工,在整体叶盘基准件叶片和流道几何特征的精加工时,选用不同型号的立铣刀,并监测加工过程中的切削力。最后,对加工后叶片和流道加工表面形貌进行测试分析,并结合切削力对比分析国产刀具和进口刀具对钛合金整体叶盘的切削加工性能。  相似文献   

17.
为了能够提高钛合金薄壁筒的加工效率,利用热等静压工艺制备了两个具有不同结构的Ti-6Al-4V薄壁筒,研究了夹具、填充泥浆和筒结构对Ti-6Al-4V薄壁筒的外圆表面粗糙度和精度的影响。结果显示,Ti-6Al-4V热等静压薄壁筒经过切削加工能够达到精度要求,填充泥浆降低了弹性回弹,提高了薄壁筒外圆精度;筒结构的内圆环和粗大端能够提高刚度,有效降低了外圆表面粗糙度值;夹具尺寸误差对圆度和同轴度影响较大,较大的尺寸误差显著降低了筒的外圆精度。  相似文献   

18.
Electrochemical drilling(ECD) provides an alternative technique for drilling multiple small holes in difficult-to-machine materials in numerous industrial applications such as for aeroengines. The value and fluctuation of electrolyte flowrate can seriously affect the machining stability and hole quality in ECD. In particular, when drilling multiple holes, the distribution and fluctuations of the electrolyte flowrate in each channel could influence the uniformity of the electrolyte flowrate among...  相似文献   

19.
何卫平  张定华 《航空学报》1994,15(2):175-180
以两种较简单的加工──交线及底曲面的刀位计算结果产生槽加工的刀位数据。提出了刀具位置边界槽及基于边界槽的刀位计算方法。该算法中刀心位置由底面加工的刀心轨迹相对边界槽裁剪而得;刀轴矢量由边界槽空间网格划分产生。提出并证明了用于获得无干涉的和均匀变化的刀轴矢量的空间网格划分的准则。本文算法可对带岛屿及复杂曲面边界的槽进行五座标数控加工的刀位计算。  相似文献   

20.
钛合金广泛应用于航空发动机中,硝酸钠(Na NO3)电解液与氯化钠(Na Cl)电解液广泛应用于常规金属材料电化学加工。研究了钛合金在应用电解液喷射加工技术(EJM)时的表现。首先应用这两种电解液对两种不同表面质量的钛合金试件分别进行EJM加工试验,通过分析加工后所得样槽的深宽比、表面粗糙度、氧化物占比以及微观形貌,分析了钛合金原始表面状态以及电解液选用对最终加工精度的影响效果。在此基础上,以不同的顺序组合应用这两种电解液对优选出的钛合金试件再次进行EJM加工试验研究,确定最优的电解液组合应用顺序。两个系列的试验研究,为提高钛合金电化学喷射加工的质量与效率提供了一定的理论和试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号