首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There has been a remarkable discovery concerning particles that are accelerated in the solar wind. At low energies, in the region where the particles are being accelerated, the spectrum of the accelerated particles is always the same: when expressed as a distribution function, the spectrum is a power law in particle speed with a spectral index of ?5, and a rollover at higher particle speeds that can often be described as exponential. This common spectral shape cannot be accounted for by any conventional acceleration mechanism, such as diffusive shock acceleration or traditional stochastic acceleration. It has thus been necessary to invent a new acceleration mechanism to account for these observations, a pump mechanism in which particles are pumped up in energy through a series of adiabatic compressions and expansions. The conditions under which the pump acceleration is the dominant acceleration mechanism are quite general and are likely to occur in other astrophysical plasmas. In this paper, the most compelling observations of the ?5 spectra are reviewed; the governing equation of the pump acceleration mechanism is derived in detail; the pump acceleration mechanism is applied to acceleration at shocks; and, as an illustration of the potential applicability of the pump acceleration mechanism to other astrophysical plasmas, the pump mechanism is applied to the acceleration of galactic cosmic rays in the interstellar medium.  相似文献   

2.
Our current understanding of the acceleration of solar-energetic particles is reviewed. The emphasis in this paper is on analytic theory and numerical modeling of the physics of diffusive shock acceleration. This mechanism naturally produces an energy spectrum that is a power law over a given energy interval that is below a characteristic energy where the spectrum has a break, or a rollover. This power law is a common feature in the observations of all types of solar-energetic particles, and not necessarily just those associated with shock waves (e.g. events associated with impulsive solar flares which are often described in terms of resonant stochastic acceleration). Moreover, the spectral index is observed to have remarkably little variability from one event to the next (about 50%). Any successful acceleration mechanism must be able to produce this feature naturally and have a resulting power-law index that does not depend on physical parameters that are expected to vary considerably. Currently, only diffusive shock acceleration does this.  相似文献   

3.
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from ~0.1 to ~500–700?MeV. All of the proton spectra exhibit spectral breaks at energies ranging from ~2 to ~46?MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of ?3.18 at >40?MeV/nuc. In the energy range 45 to 80?MeV/nucleon about ~50?% of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of 〈Q Fe〉≈+20 if the acceleration starts at ~1.24–1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.  相似文献   

4.
加速度对含铝复合推进剂瞬时燃速的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了加速度向量对含铝复合推进剂瞬时燃速的影响.其中包括加速度大小和方向对推进剂瞬时燃速增加率的影响和在同一加速度条件下铝粉粒径、铝粉含量和铝粉形状对瞬时燃速增加率的影响.此外,还对研究结果进行了分析和讨论.  相似文献   

5.
We discuss pickup ion acceleration and transport near the solar wind termination shock from the perspective of their spectral, spatial, and pitch-angle distributions. Our study is performed in the framework of a recently developed anisotropic transport model based on a Legendre polynomial expansion technique. Voyager 1 LECP angular distributions of 1 MeV protons, represented in the form of an expansion in spherical harmonics in the frame aligned with the measured interplanetary magnetic field, are used as benchmarks for our theory. We find the observed distributions consistent with our model predictions for particle acceleration and reflection at a highly oblique shock wave. It is shown that first-order (field aligned) anisotropy is a measure of shock obliquity while the second-order (transverse) anisotropy reflects the energy dependence of the particle scattering mean free path. We also discuss the role of enhanced scattering and momentum diffusion on the spectral properties of energetic charged particles.  相似文献   

6.
Jokipii  J.R. 《Space Science Reviews》1998,86(1-4):161-178
Cosmic rays from many sources and in many locations exhibit similar, inverse-power-law energy spectra, which suggests a common origin for most cosmic rays. Diffusive shock acceleration appears at present to be this common accelerator. Hence, anomalous cosmic rays, thought to be accelerated at the solar-wind termination shock, provide a relatively accessible laboratory for the study of the mechanism of cosmic-ray acceleration. Observations showing a transition from singly-charged anomalous cosmic-ray oxygen to multiply-charged at an energy of some 250 MeV support the picture of acceleration at the quasi-perpendicular termination shock. Such acceleration may be important in other sources, as well. The basic physics of this acceleration process is discussed in some detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
I review the observations of galactic synchrotron sources, focusing on shell supernova remnants (SNRs), with particular attention to attributes that constrain the properties of electron acceleration. Radio observations provide information on source fluxes, spectral index, morphology, and polarization. Recent observations give us strong reason to believe that several young SNRs show synchrotron X-ray emission. Even if X-rays are thermal, however, limits can be set on the maximum energy to which electrons can be accelerated without a spectral break, since no galactic SNR is observed to have X-ray emission (due to any source) as bright as the extrapolation from radio frequencies of radio synchrotron emission. If synchrotron X-rays are detected or inferred, their morphology and spectrum provide important information on mechanisms governing acceleration to the highest energies. I describe models of synchrotron emission from SNRs and their comparison with observations. Finally, I describe the tasks ahead for both observers and theoreticians, to make better use of what SNR synchrotron emission tells us about particle acceleration.  相似文献   

8.
Many radar systems now employ wideband waveforms and noncoherent averaging techniques to reduce the scintillation of the backscatter from ground clutter. The purpose of this paper is to quantify the effects of the wideband spectral shape on the clutter standard deviation after noncoherent averaging of the received signal. Relationships are developed which quantify the clutter standard deviation for any spectral shape and any ratio of transmitted band-width to processed bandwidth.  相似文献   

9.
New expressions are given for analytical solutions to the steady-state Kalman gains of the two-state exponentially correlated velocity (ECV) and the three-state exponentially correlated acceleration (ECA) tracking filters with position measurements by using spectral factorization method. The measurement colored noise model is characterized by a correlation time 1/λ. The vehicle oscillations such as wind-induced-bending is also considered in the modeling of the system which leads to the most generalized state transition matrix  相似文献   

10.
In nonlinear, diffusive shock acceleration, compression ratios will be higher and the shocked temperature lower than test-particle, Rankine–Hugoniot relations predict. The heating of the gas to X-ray emitting temperatures is strongly coupled to the acceleration of cosmic-ray ions. We have developed a simple hydrodynamical supernova remnant model which includes the effects of nonlinear acceleration (Berezhko and Ellison, 1999). We show how efficient particle acceleration modifies the dynamics of supernova remnants, and use the X-ray spectral data on Keplers remnant to illustrate the effects on the thermal X-ray emission, including non-equilibrium ionization effects (Decourchelle et al., 2000a).  相似文献   

11.
Quasi-periodic pulsations (QPP) are a common feature of flaring energy releases in the solar atmosphere, observed in all bands, from radio to hard X-ray. In this review we concentrate on QPP with the periods longer than one second. Physical mechanisms responsible for the generation of long QPP split into two groups: “load/unload” mechanisms and MHD oscillations. Load/unload mechanisms are repetitive regimes of flaring energy releases by magnetic reconnection or by other means. MHD oscillations can affect all elements of the flaring emission generation: triggering of reconnection and modulation of its rate, acceleration and dynamics of non-thermal electrons, and physical conditions in the emitting plasmas. In the case of MHD oscillations, the periodicity of QPP is determined either by the presence of some resonances, e.g. standing modes of plasma structures, or by wave dispersion. Periods and other parameters of QPP are linked with properties of flaring plasmas and their morphology. Observational investigation of the QPP generation mechanisms based upon the use of spatial information, broadband spectral coverage and multi-periodicity is discussed.  相似文献   

12.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   

13.
Validation of windblown radar ground clutter spectral shape   总被引:1,自引:0,他引:1  
We investigate the robustness of the linear matched filter (MF) operating in a Gaussian environment in the presence of a mismatch between the design clutter-power spectral density (PSD) shape and the actual one. The Gaussian, the power-law (PL), and the double-exponential spectral models have been considered with the goal of investigating which one fits best for windblown foliage. We analyze the MF performance in terms of improvement factor, probability of false alarm, and probability of detection by making use of the theoretical models and measured X-band ground clutter data. The numerical results validate the double-exponential spectral model for windblown foliage by showing that the differences in performance prediction between using measured clutter data and modeled clutter data of various spectral shapes (viz., Gaussian, FL, and double-exponential) are minimized when the spectral model employed is of double-exponential shape  相似文献   

14.
王巍  李然  张厚祥  于文鹏 《航空学报》2008,29(1):209-215
 首先提出了一种基于两位两通高速开关阀的无杆气缸脉宽调制(PWM)控制方案,为气缸提供了中位截止机能。然后针对Bang-Bang控制算法中存在的超调和振荡现象,提出了摩擦力和加速度(FA)补偿的变结构Bang-Bang算法。该算法综合位置和速度误差的影响构造了加速度方向切换评价函数,考虑了摩擦力对控制量设定的影响,分别依据阶跃函数、线性函数和反正切函数对活塞加速度值进行动态设定,实现了运动过程中对活塞摩擦力的补偿和加速度的调整。最后,利用该算法进行了无杆气缸的带载伺服定位试验,对3种加速度设定函数的控制效果做了比较。结果证明FA补偿变结构算法在提高气缸定位精度方面有显著效果。  相似文献   

15.
随机路面激励下车载无人机的载荷响应与仿真   总被引:1,自引:0,他引:1  
建立了五自由度的车载无人机的振动系统在随机路面激励下的数学模型,并获得路面不平度双激励下的功率谱矩阵,运用功率谱密度法求得频域上的频响特性和加速度的均方值。由路面功率谱反推路面不平度的方法,对A、B、C和D4个国家等级路面不平度交替冲击的复杂情况进行了时域模拟,运用MAT-LAB的Simulink工具,仿真了无人机在一次运载任务剖面中的载荷响应。  相似文献   

16.
民机机身下部结构耐撞性优化设计   总被引:3,自引:2,他引:3  
 针对含多设计参数的典型民机机身下部结构耐撞性设计,提出了一种设计方法,该方法以最小化客舱地板的初始加速度峰值与最大化参考压溃状态的结构内能为优化双目标,通过Kriging模型对结构的冲击响应进行预测,采用非支配排序遗传算法II(NSGA-II)对双目标进行优化,进而由Nash-Pareto策略获得最优方案。为了得到最优设计方案,同时研究设计参数对机身结构耐撞性的影响,提出最大化期望提高与最大化预测方差同步加点准则建立代理模型。采用该设计方法,以典型民机机身下部结构设计问题为算例,对客舱地板支撑结构、货舱地板和泡沫构件形状参数进行优化。结果表明,相对原始设计客舱地板的加速度峰值降低约18.3%,次高加速度峰值也得到有效降低,改善了机身结构的耐撞性;Kriging模型预测响应与有限元分析结果误差小于1%,说明了设计方法的有效性。  相似文献   

17.
Tactically maneuvering targets are difficult to track since acceleration cannot be observed directly and the accelerations are induced by human control or an autonomous guidance system therefore they are not subject to deterministic models. A common tracking system is the two-state Kalman filter with a Singer maneuver model where the second-order statistics of acceleration is the same as a first-order Markov process. The Singer model assumes a uniform probability distribution on the targets acceleration which is independent of the x and y direction. In practice, it is expected that targets have constant forward speed and an acceleration vector normal to the velocity vector, a condition not present in the Singer model. The work of Singer is extended by presenting a maneuver model which assumes constant forward speed and a probability distribution on the targets turn-rate. Details of the model are presented along with sample simulation results  相似文献   

18.
给出了噪声载荷作用下薄壁柱壳结构随机振动加速度响应功率谱密度的计算公式和计算方法,并与实际测量获得的加速度响应功率谱密度进行了比较,计算的功率谱与实测的功率谱具有较好的一致性,说明这种估算噪声载荷作用下薄壁柱壳结构随机振动加速度响应功率谱密度的方法是合理可行的。用同样方法导出的Von Mises应力响应的功率谱密度及其均方值的计算公式,可直接用于疲劳强度分析。   相似文献   

19.
王琦魁  陈友东  李伟  魏洪兴 《航空学报》2010,31(7):1481-1487
 为了减弱轨迹拐角处的向心加速度变化给加工带来的不利影响,使用五次PH曲线进行拐角过渡,在控制加工速度的同时对向心加速度进行控制。通过对拐角处连接情况的分析,确定了连接PH曲线中的参数计算方法。在拐角前后使用S加减速进行加工,以保证直线、圆弧轨迹加工中的平稳;在拐角连接区域内使用基于曲率的速度模型,通过对拐角前后S加减速和拐角速度的连接,使拐角前后的速度更加连续,得到平滑的速度曲线;通过拐角处的加速度和弓高误差的限制,计算平稳的加工速度。结果表明,使用五次PH曲线进行拐角过渡的误差小于7.4 μm,能够满足加工需要,同时,拐角处的向心加速度变化更加平稳。将拐角前后的S加减速和拐角区域内速度连接后,得到了平滑的速度曲线。  相似文献   

20.
为了实现复合材料结构损伤的定位与定量识别,利用传递率函数的运行模态分析方法探讨了复合材料梁无损检测方法,通过对加速度传递函数的最小二乘拟合,得到结构的模态频率和阻尼,对传递率函数矩阵奇异值分解,得到结构的振型.运用曲率模态(CMS)和曲率模态变化率(CMSI)作为损伤指标,对具有单损伤、多损伤和不同损伤程度的复合材料梁...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号