首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

2.
3.
《Acta Astronautica》2007,60(4-7):313-321
The paper focuses on the strong correlation between unmitigated symptoms exhibited by post Space flight astronauts, and symptoms associated with postural deficiency syndrome (PDS) that can be correctly assessed, identified, and monitored via a neurophysiological ocular–vestibular monitoring system (OVMS). From examining clinical data taken over a 10-year period from patients experiencing PDS related acute and chronic post-traumatic medical conditions, the authors show the potential for current assessment and monitoring techniques to examine better the impacts on astronaut neurophysiology. The data presented provide strong evidence that this biomedical monitoring and assessment methodology along with appropriate technology can lead to a better understanding of astronaut post-flight neurophysiology, which is necessary if human exploration in Space is to continue on a successful path.  相似文献   

4.
J Arnould 《Acta Astronautica》2001,49(3-10):489-494
Humankind's exploration of Space has until now been understood as analogous to that of planet Earth: sending out crews to far-off, unknown lands in the hope of finding supplies of food, water or energy along with shelter and living-space. But Space is turning out to be much less hospitable than our earthly milieu in terms of resources as well as energy costs. It seems appropriate to ask what level of adaptation is needed for humans to travel and live in the cosmos, and to assess if the next logical step should necessarily be a programme of conquest analogous to that of the Moon--for example, towards Mars. Should we not rather be making more use of Earth's immediate neighbourhood, namely the sphere of a million of kilometres we call "Greater Earth"? In the same way, it is appropriate to ask questions about the conception of human beings which will from now on sustain the conquest of Space. The astronaut of the last forty years is the direct heir of the explorers of Ancient and Modern times; now, through the influence of science and technology, humanity has been put "into motion" not only geographically, but also in its most essential foundations: culture, psychology, philosophy. If the development of telepresence technology now gives us the ability to talk about a "Greater Human Being", it is chiefly through freedom of choice for oneself, for humanity and even for Earth.  相似文献   

5.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   

6.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.  相似文献   

7.
In contrast to English, Finnish has several postpositions which indicate in front of locations (edella, edessa) and behind locations (takana, jaljessa and perassa). Based on predictions generated from findings from other prepositions in English, and following the prediction by Nikanne (2003) that some postpositions mark motion while others do not, an experiment was designed to examine the influence of movement, alignment, and orientation of located and reference objects on the comprehension of in front of and behind in English and the corresponding Finnish postpositions. Native speakers of English and Finnish had to rate the appropriateness of sentences containing these terms to describe pictures of cars at various positions on a roundabout. The results show similarity between "in front of" and 7quot;behind" terms across languages. While movement does distinguish between "behind" terms in Finnish, in both Finnish and English movement only affected the acceptability of "in front of" and "behind" when reference frame conflicts were present.  相似文献   

8.
In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments have foreseen quantitative three-dimensional human movement analysis in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers has been installed onboard the Russian Space Station MIR and 8 in flight sessions have been performed. Techhology and method for the collection of kinematics data are described, evaluating the accuracy in three-dimensional marker localisation. Results confirm the suitability of opto-electronic technology for quantitative human motion analysis on orbital modules and raise a set of "lessons learned", leading to the improvement of motion analyser performance with a contemporary swiftness of the on-board operations. Among the experimental program of T4, results of three voluntary posture perturbation protocols are described. The analysis suggests that a short term reinterpretation of proprioceptive information and re-calibration of sensorimotor mechanisms seem to end within the first weeks of flight, while a continuous long term adaptation process allows the refinement of motor performance, in the frame of never abandoned terrestrial strategies.  相似文献   

9.
李由  王春慧  严曲  张小虎  谢良 《宇航学报》2019,40(6):725-732
SpaceMocap是一套基于多RGB-D相机的计算机视觉航天员运动捕捉系统。地面准备阶段,扫描航天员模型,并分别标定彩色相机的内参数。在轨采集阶段,3~4台相机布置在舱内角落,同步采集航天员任务视频。地面处理阶段,通过相机外参数标定和ICP方法实现点云融合,采用深度神经网络对人体关节点位置进行检测并初始化位姿参数,再用改进的ICP方法进行位姿求精,实现序列图像中关节角度跟踪。本系统搭载TG-2升空,对SZ-11航天员的任务视频进行了采集和处理,首次获取了在轨航天员的姿态(包括中性体位)、占位空间、运动参数等重要数据。结果表明,运动捕捉的模型与点云具有良好的重合度,关节点位置与关节角度具有较高的跟踪精度。SpaceMocap是我国首个在轨运动捕捉系统,它小型、轻质,具有计算机视觉特有的非接触测量、直观、高精度优势,无需在人体上粘贴任何标志,具有良好的抗遮挡能力,完全适用于微重力、狭小空间环境下的在轨应用 。  相似文献   

10.
Canada and the International Space Station program: overview and status   总被引:4,自引:0,他引:4  
Gibbs G  Sachdev S 《Acta Astronautica》2002,51(1-9):591-600
The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have now participated in three ISS assembly missions--Julie Payette on STS-96, Marc Garneau on STS-97, and Chris Hadfield on STS-100 in April 2001 during which he performed Canada's first EVA and the successful installation of the Space Station Remote Manipulator System.  相似文献   

11.
航天员空间活动接受辐射剂量限值的研究   总被引:2,自引:0,他引:2  
空间生物学辐射效应是由空间辐射环境引起的,空间辐射环境的变化受太阳活动性影响。空间辐射水平比地表面水平高,航天员在空间所接受剂量比地面人员接受的吸收剂量高出100倍甚至更高,并且高能重离子的生物效应显著。文章简要阐述了空间辐射环境、空间辐射生物学效应与航天员的辐射剂量限值等问题。  相似文献   

12.
The experience in operation and improving the Orlan-type space suits   总被引:1,自引:0,他引:1  
Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.  相似文献   

13.
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future.  相似文献   

14.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

15.
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.

It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.

It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints.  相似文献   


16.
Extravehicular activity training and hardware design consideration   总被引:3,自引:0,他引:3  
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.  相似文献   

17.
The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1–7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable spacecraft would be available.  相似文献   

18.
The design of Space Station Freedom is discussed, with an emphasis on the measures taken to ensure the morale and productivity of the inhabitants. Special efforts have been taken to design the station with creature comforts of Earth, such as better food preparation and hygiene equipment than is found in current or past spacecraft. The galley for food storage and preparation is described, as are the shower and laundry facilities. Designers of the space station hope to ensure astronaut mental health and productivity by supplying them with a current working and living space.  相似文献   

19.
The paper reviews the research that has been undertaken to understand and quantify the disturbance effects of the astronaut's motion inside and outside the spacecraft on the vehicle's attitude and acceleratory environment. In early investigations, the dynamic interaction of astronauts, modeled as point masses, and the spacecraft, modelled as a rigid body, was analyzed. Through ground-based experiments and the modeling of astronaut-induced forces and moments as stochastic processes, it became possible to estimate the magnitude and energy content of the loads produced by the astronaut. The first experiment in space to measure the astronaut-induced disturbances was conducted on the Skylab orbital station. Loads generated while performing routine operations were measured on board the Space Shuttle in 1994 and on the space station Mir in 1996–1997.  相似文献   

20.
The role of man in space is investigated in the operation of the Advanced Fluid Physics Module (AFPM), a scientific instrument dedicated to fluid physics research in a microgravity environment and flown on the Spacelab D2 mission. The astronaut involvement is addressed by applying the criteria of the THURIS study, conducted by NASA for the optimization of future manned space flights. Outcomes of the THURIS study are first summarized. The AFPM characteristics and interfaces are briefly presented. The five experiments performed on board Spacelab D2 are introduced and the involvement of the astronaut is described. Finally, THURIS criteria are applied to an AFPM experiment scenario. Results show that, of all the activities involved in the AFPM nominal operation, two thirds are related to hardware manipulation and to procedure following, while the last third uses the unique astronaut intellectual capabilities, making his presence in orbit mandatory for successful experiment completion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号