首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators’ outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.  相似文献   

2.
多径效应对GPS载波相位观测量的影响   总被引:1,自引:0,他引:1  
孙礼  王银锋  张其善 《航空学报》1998,19(Z1):76-78
推导了GPS接收机中多径效应引入的最大载波相位跟踪误差的闭合形式。得到以下结论:当直达信号跟踪误差不超过1码片时,最大载波测相多径误差为1/4周,该值出现在测码伪距多径误差最小的情况下;当直达信号跟踪误差超过或等于1码片时,接收机跟踪多径信号,信号误检发生。  相似文献   

3.
为了抑制多径效应对GPS的严重影响,在分析了多径效应对伪码跟踪环路影响的基础上,提出了一种基于空间平滑的改进稳健波束形成算法来抑制GPS多径效应。以直线阵为基础,采用前后向空间平滑算法对阵列接收信号进行预处理,针对各种失配,采用改进的稳健波束形成算法进行处理。该方法既可以有效地抑制GPS多径效应,又可以有效地改善伪码跟踪环路的跟踪精度。仿真实验结果验证了所提方法的正确性和有效性,具有较高的工程实践价值。  相似文献   

4.
GPS code and carrier multipath mitigation using a multiantennasystem   总被引:1,自引:0,他引:1  
Multipath is a major source of error in high precision Global Positioning System (GPS) static and kinematic differential positioning. Multipath accounts for most of the total error budget in carrier phase measurements in a spacecraft attitude determination system. It is a major concern in reference stations, such as in Local Area Augmentation Systems (LAAS), whereby corrections generated by a reference station, which are based on multipath corrupted measurements, can significantly influence the position accuracy of differential users. Code range, carrier phase, and signal-to-noise (SNR) measurements are all affected by multipath, and the effect is spatially correlated within a small area. In order to estimate and remove code and carrier phase multipath, a system comprising a cluster of five GPS receivers and antennas is used at a reference station location. The spatial correlation of the receiver data, and the known geometry among the antennas, are exploited to estimate multipath for each satellite in each antenna in the system. Generic receiver code and carrier tracking loop discriminator functions are analyzed, and relationships between receiver data, such as code range, carrier phase, and SNR measurements, are formulated and related to various multipath parameters. A Kalman filter is described which uses a combination of the available information from the antennas (receivers) in the multiantenna cluster to estimate various multipath parameters. From the multipath parameters, the code range and carrier phase multipath is estimated and compensated. The technique is first tested on simulated data in a controlled multipath environment. Results are then presented using field data and show a significant reduction in multipath error  相似文献   

5.
SNR-based multipath error correction for GPS differential phase   总被引:4,自引:0,他引:4  
Carrier phase multipath is currently the limiting error source for high precision Global Positioning System (GPS) applications such as attitude determination and short baseline surveying. Multipath is the corruption of the direct GPS signal by one or more signals reflected from the local surroundings. Multipath reflections affect both the carrier phase measured by the receiver and signal-to-noise ratio (SNR). A technique is described which uses the SNR information to correct multipath errors in differential phase observations. The potential of the technique to reduce multipath to almost the level of receiver noise was demonstrated in simulations. The effectiveness on real data was demonstrated with controlled static experiments. Small errors remained, predominantly from high frequency multipath. The low frequency multipath was virtually eliminated. The remaining high frequency receiver noise can be easily removed by smoothing or Kalman filtering  相似文献   

6.
秦永元  俞济祥 《航空学报》1990,11(12):564-569
 本文推导了C/A码信号相干和非相干接收的GPS接收机码环的动力学方程,分析了码环的噪声响应和动态跟踪性能对码环带宽的矛盾要求,并提出了解决矛盾的方法:惯导速度辅助。分析结果表明:窄带宽码环经精度为1nmile/h的惯导系统速度辅助后,动态跟踪误差为无辅助时的1/1000,接收机将兼有抗强干扰和跟踪高动态的性能。  相似文献   

7.
Modeling and analysis for the GPS pseudo-range observable   总被引:3,自引:0,他引:3  
In this paper, a digital system for the Global Positioning System (GPS) pseudo-range observable is modeled and analyzed theoretically. The observable is measured in a GPS receiver by accurately tracking the pseudorandom noise (PRN) code phase of the input GPS signal using a digital energy detector and a digital delay lock loop (DDLL). The following issues are presented: (1) mathematical modeling of the digital PRN code acquisition and tracking system, (2) the closed-form expression derivation for the detection and false-alarm probabilities of the acquisition process and for the variance of code phase tracking error, and (3) the linear and nonlinear performance analysis of the DDLL for optimizing the receiver structures and parameters with tradeoff between the tracking errors due to receiver dynamics and due to input noise  相似文献   

8.
Radio Frequency (RF) technology represents a high-precision relative navigation solution that has significant potential for application to earth-orbiting satellites. In precision applications, multipath errors dominate the total error because observables, which are used to estimate carrier-phase integer ambiguity, are not always subject to a Gaussian distribution when dual-frequency ambiguity estimation methods are used in the presence of multipath. As it has been shown that ranging observables obey a Gaussian mixture distribution, this study proposes improvements to the accuracy of estimation based on multipath mitigation founded on the Gaussian mixture model. To this end, such a model is created for integer ambiguity resolution in the presence of multipath, using which the theoretical error in dual-frequency ambiguity estimation is derived. Expectation Maximization (EM), which aids dual-frequency ambiguity estimation, is subsequently proposed to reduce the effect of multipath errors. Finally, two experimental scenarios are implemented to test the performance of the proposed method. The results show that EM-aided dual-frequency ambiguity estimation reduces the range error to approximately 20% in comparison with simple dual-frequency ambiguity estimation. Therefore the proposed technique is effective for multipath mitigation in RF relative measurement.  相似文献   

9.
伪距解除相关法在GPS/SINS紧组合系统中的应用研究   总被引:3,自引:0,他引:3  
陈家斌  袁信 《航空学报》1995,16(6):707-710
介绍了伪距解除相关法的原理 ,设计了一种加权平均跟踪误差估计器 ,用以估计 GPS接收机码环跟踪误差。研究结果表明 ,与未对伪距测量值进行修正时相比 ,应用伪距解除相关技术可以减小组合系统的导航误差 ,提高系统的导航精度  相似文献   

10.
The theory and technique of angle-of-arrival (AOA) estimation using random-noise or other stochastic transmit waveforms is addressed. The additional uncertainties induced by signal itself and the statistical complexity of the received signals result in major challenges. The statistical properties of the random-noise interferometer and monopulse radar system are studied and compared theoretically using an approximation method. Furthermore, a random-noise coherent correlation receiver (CCR) architecture is proposed. The concept of mean monopulse characteristic curve (MMCC) is introduced. Experimental results using an X-band random-noise monopulse radar system validate the theoretical predictions of random-noise monopulse characteristics and suggest potential applications such as surveillance, imaging, and maneuvering target tracking.  相似文献   

11.
Performance analysis of GPS carrier phase observable   总被引:3,自引:0,他引:3  
The accuracy analysis of Global Positioning System (GPS) carrier phase observable measured by a digital GPS receiver is presented. A digital phase-locked loop (DPLL) is modeled to extract the carrier phase of the received signal after a pseudorandom noise (PRN) code synchronization system despreads the received PRN coded signal. Based on phase noise characteristics of the input signal, the following performance of the first, second, and third-order DPLLs is analyzed mathematically: (1) loop stability and transient process; (2) steady-state probability density function (pdf), mean and variance of phase tracking error; (3) carrier phase acquisition performance; and (4) mean time to the first cycle-slipping. The theoretical analysis is verified by Monte Carlo computer simulations. The analysis of the dependency of the phase input noise and receiver design parameters provides with an important reference in designing the carrier phase synchronization system for high accuracy GPS positioning  相似文献   

12.
The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. The impact of data and pilot codes cross-correlation on the distortion of the discriminator function (i.e., the S-curve) is investigated, when only the pilot (or data) components of MBOC signals are tracked. It is shown that the modulation schemes and the receiver configuration (e.g., the correlator spacing) strongly affect the S-curve bias. In this paper, two methods are proposed to optimize the data/pilot code pairs of Galileo E1 OS and GPS L1C. The optimization goal is to obtain the minimum average S-curve bias when tracking only the pilot components a the specific correlator spacing. Figures of merit, such as S-curve bias, correlation loss and code tracking variance have been adopted for analyzing and comparing the un-optimized and optimized code pairs. Simulation results show that the optimized data/pilot code pairs could significantly mitigate the intra-channel codes cross-correlation, and then improve the code tracking performance of MBOC signals.  相似文献   

13.
Ground-based transmitters called pseudolites have been proposed to augment the basic Global Positioning System (GPS) in environments where satellite visibility is limited. One difficulty in their use is the so-called near-far problem, where in close proximity to the ground transmitter, the pseudolite signal can be orders of magnitude stronger than the satellite signals. This large range of signal levels prevents a conventional receiver from simultaneously detecting both types of signals. This paper describes the application of a signal processing technique, known as successive interference cancellation (SIC), to the acquisition and tracking of weak satellite signals in the presence of a nearby pseudolite and possible multipath reflections of this pseudolite signal. The SIC architecture is implemented on simulated and experimental near-far data sets. The results are compared with a conventional detector and improvements in acquisition and tracking performance are illustrated.  相似文献   

14.
为了提高北斗导航接收机的灵敏度,提升其弱信号跟踪能力,通常需要利用长时间的相干积分来提高环路信噪比。但是,当相干积分时间加长到一定程度时,环路性能反而有所下降,信噪比提升也不能达到理论值。针对由剩余频率误差和晶振误差引起的相干积分能量损失问题,主要研究了频率偏差对环路跟踪性能的影响,并提出了利用频率稳定度传递策略辅助弱信号跟踪的方法,解决了北斗导航接收机弱信号跟踪性能提升的问题,最大程度地改善了相干积分的效果,实现了对弱信号的跟踪。利用软件接收机平台对提出的频率稳定度传递算法进行验证,仿真结果表明该算法可使环路信噪比提升4dB ~5dB,充分说明了其可行性及有效性。  相似文献   

15.
The potential of output from a window correlator to mitigate GPS phase multipath is reviewed and assessed based on the analysis of data collected in controlled multipath environments under both static and kinematic conditions. Previous findings that the method is suboptimal for reflectors leading to additional path lengths of less than about 7m are confirmed, and methods for combining this output with two other multipath indicators: time series of signal-to-noise ratios (SNRs) and estimates of code multipath from dual frequency code and phase combinations, are investigated. A new method to combine all three indicators has been found and its application is shown to improve the quality of GPS static phase data by between 10% and 20% depending on the length of the additional path travelled by the reflected signal. The method can be applied completely automatically as it uses just the three multipath indicators; no knowledge of the surrounding environment is required. The paper concludes with some suggested practical applications.  相似文献   

16.
GPS/SINS超紧组合导航的性能分析   总被引:1,自引:0,他引:1  
GPS接收机在高动态环境下很容易失锁,特别是载体的高动态造成的应力对接收机载波跟踪环影响很大。为了解决高动态环境下的组合导航,分析了GPS接收机载波跟踪环的测量误差和跟踪门限,采用惯导速度辅助GPS接收机跟踪环路的超紧组合结构。超紧组合需要涉及到GPS接收机跟踪环内部编排及高动态环境下的实验数据,难度较大。针对超紧组合仿真专门开发了GPS实时软件接收机、高动态GPS中频信号仿真器和惯导模拟器并构建了一个完整的GPS/SINS超紧组合仿真系统。仿真结果表明,该超紧组合导航系统可以跟踪50g的加速度和10倍音速。  相似文献   

17.
Multipath-adaptive GPS/INS receiver   总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   

18.
Analyses are presented of the performance of binary and M-ary coherent and noncoherent communication systems operating in the impulsive atmospheric radio noise environment. The receiver is usually a maximum likelihood detector for white Gaussian interference and therefore has the form of a parallel bank of matched filters followed by decision circuitry. By employing a Poisson or generalized Shot noise model for the impulsive noise with a suitable probability density function (pdf), closed-form expressions and bounds of error probabilities for M-ary noncoherent and coherent amplitude-shift keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) systems are obtained and the results discussed.  相似文献   

19.
A new multipath mitigation technique is proposed for binary offset carrier (BOC) signals in global navigation satellite systems (GNSS) using the concept of gating function originally conceived for the GPS coarse-acquisition (C/A) code. Specially-tailored pulses are utilized to diminish the number of false-lock points of the code discriminator response and to improve the multipath mitigation capability. The code loop includes only four real correlators (two extra correlators are required for the simplified bump-jumping algorithm with BOC(n,n) signals). Results obtained with BOC(n,n) and BOC(2n,n) signals show that this technique eliminates the multipath ranging errors for reflected rays with relative delays typically above twenty percent of the spreading code chip duration, thus comparing favorably with the conventional receiver correlation techniques.  相似文献   

20.
Airborne GPS systems are being upgraded to provide sufficient positioning accuracy to support automatic landing operations in low visibility conditions. This is made possible by differential GPS (DGPS), in which the errors common to the airborne receiver and ground station are removed by knowledge of the latter's precise location. However, errors specific to the airborne system remain, of which the dominant components are receiver noise and multipath. To support the assessment of the integrity of the signal in space, these residual errors are incorporated in a statistically based error model, designated as the "standard model." The standard model is defined as the standard deviation of a Gaussian distribution that overbounds the residual pseudo-range (PR) error. It relates the standard deviation of the overbounding distribution to the elevation angle of the satellite relative to the local level coordinate system. The international community is currently developing improved standards to enable DGPS systems to support landings in the worst visibility conditions (i.e., CAT III). As a part of this development, the standard model for multipath is being re-evaluated and an improved model is sought. In order to better characterize the residual multipath errors, tools for accurate calculation of the airframe scattering effects are needed. Development of such tools is the subject of this paper. A new method for accurately computing pseudo-range error, based on the use of high-fidelity EM models, is described. This approach provides new insight into the mechanisms causing multipath error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号