首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies.  相似文献   

2.
The solar EUV irradiance is of key importance for space weather. Most of the time, however, surrogate quantities such as EUV indices have to be used by lack of continuous and spectrally resolved measurements of the irradiance. The ability of such proxies to reproduce the irradiance from different solar atmospheric layers is usually investigated by comparing patterns of temporal correlations. We consider instead a statistical approach. The TIMED/SEE experiment, which has been continuously operating since February 2002, allows for the first time to compare in a statistical manner the EUV spectral irradiance to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices, and the He I equivalent width.  相似文献   

3.
4.
This paper examines high resolution (ΔE/E = 0.15) photoelectron energy spectra from 10 eV to 1 keV, created by solar irradiances between 1.2 and 120 nm. The observations were made from the FAST satellite at ∼3000 km, equatorward of the auroral oval for the July–August, 2002 solar rotation. These data are compared with the solar irradiance observed by the Solar EUV Experiment (SEE) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and fluxes calculated using the Field Line Interhemispheric Plasma (FLIP) code. The 41 eV photoelectron flux, which corresponds to solar EUV fluxes near 20 nm, shows a clear solar rotation variation in very good agreement with the EUV flux measurements. This offers the possibility that the 41 eV photoelectron flux could be used as a check on measured solar EUV fluxes near 20 nm. Because of unexpected noise, the solar rotation signal is not evident in the integral photoelectron flux between 156 and 1000 eV corresponding to EUV wavelengths between 0.1 and 7 nm measured by the SEE instrument. Examination of daily averaged photoelectron fluxes at energies between 25 and 500 eV show significant changes in the photoelectron spectra in response X and M class flares. The intensity of photoelectrons produced in this energy region is primarily due to two very narrow EUV wavelength regions at 2.3 and 3 nm driving Auger photoionization in O at 500 eV and N2 at ∼360 eV. Comparison of calculated and daily averaged electron fluxes shows that the HEUVAC model solar spectrum used in the FLIP code does not reproduce the observed variations in photoelectron intensity. In principle, the 21 discrete photoelectron energy channels could be used to improve the reliability of the solar EUV fluxes at 2.3 and 3 nm inferred from broad band observations. In practice, orbital biases in the way the data were accumulated and/or noise signals arising from natural and anthropogenic longitudinally restricted sources of ionization complicate the application of this technique.  相似文献   

5.
6.
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance.  相似文献   

7.
根据空间天气的状态,调整大气模型的相关输入参数能够减小模型的计算误差.通过对比CHAMP卫星在轨大气密度探测数据与NRLMSISE-00模式的计算结果发现,通过调整F10.7的输入,使轨道大气密度积分的模式计算结果与探测结果之间的误差达到最小,此时的F10.7被称为理想F10.7输入(F*).进一步的分析发现,F*与太阳紫外辐射MgII指数存在很好的相关性,因此可以选择其他的太阳紫外辐射代理参数取代F10.7,从而减小模型计算误差.本文采用神经网络技术,建立新的太阳紫外辐射代理参量Feuv与MgII,F10.7等的对应模型,能够根据当日参数值计算Feuv.研究结果表明,新的代理参数能够有效减小NRLMSISE-00的计算误差.   相似文献   

8.
In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16–150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth’s climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.  相似文献   

9.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA’s Thermosphere–Ionosphere–Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 μm limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.  相似文献   

10.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

11.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   

12.
Data bases and limits of applicability of existing empirical thermospheric models are reviewed by using these models together with solar EUV irradiance data in studying the solar activity effect on composition, density and temperature. For two rather short aeronomy missions of the AEROS A and B satellites solar EUV indices as proposed by Schmidtke are used in comparison with the 10.7 cm solar flux F in determining the solar activity effect in in-situ composition measurements sampled by the same satellites at 250, 310 and 380 km altitude. No advantage of solar EUV indices over F could be determined.  相似文献   

13.
Primary photoionisation of major ionospheric constituents is calculated from satellite-borne solar EUV measurements. Number densities of the background atmosphere are taken from the NRLMSISE-00 climatology. From the calculated ionisation rates, a proxy termed EUV-TEC, which is based on the global total ionisation is calculated, and describes the ionospheric response to solar EUV and its variability. The proxy is compared against the global mean ionospheric total electron content (TEC) derived from GPS data. Results show that the EUV-TEC proxy provides a better overall representation of global TEC than conventional solar indices like F10.7 do. The EUV-TEC proxy may be used for scientific research, and to describe the ionospheric effects on radio communication and navigation systems.  相似文献   

14.
We use a trio of empirical models to estimate the relative contributions of solar extreme ultraviolet heating, Joule heating and particle heating to the global energy budget of the earth’s upper atmosphere. Daily power values are derived from the models for the three heat sources. The SOLAR2000 solar irradiance specification model provides estimates of the daily extreme EUV solar power input. Geomagnetic power comes from a combination of satellite-derived electron precipitation power and an empirical model of Joule power derived from hemispherically integrated estimates of high-latitude heating, which we discuss in this paper. From 1975 to mid-2002, the average daily contributions were electrons: 51 GW, Joule: 95 GW and solar: 784 GW. Joule and particle heating combine to provide more than 17% of the total global upper atmospheric heating. For the top 10% and 1% of heating events, contributions rise to 20% and 25%, respectively. In the top 15 heating events, geomagnetic power contributed more than 50% of the total power budget. During three events, the Joule power alone exceeded solar power.  相似文献   

15.
从太阳极紫外辐射研究的重要性出发, 介绍了太阳极紫外辐射E10.7指 数及其作用, 详细阐述了利用两个能道的太阳辐射观测值计算极紫外辐射E10.7指数的计算方法. 利用该方法对实测太阳辐射数据进行处理, 计算获得了2000-2005年的每日E10.7指数, 并将计算结果 与Solar2000模式的输出结果进行对比分析, 验证了该计算方法的可行性, 对比结果表明, 最大相对误差在20%以内, 平均相对误差均在10%以内.   相似文献   

16.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   

17.
Total Solar Irradiance (TSI) has been measured for more than three decades. These observations demonstrate that total irradiance changes on time scales ranging from minutes to years and decades. Considerable efforts have been made to understand the physical origin of irradiance variations and to model the observed changes using measures of sunspots and faculae. In this paper, we study the short-term variations in TSI during the declining portion and minimum of solar cycle 22 and the rising portion of cycle 23 (1993–1998). This time interval of low solar activity allows us to study the effect of individual sunspot groups on TSI in detail. In this paper, we indicate that the effect of sunspot groups on total irradiance may depend on their type in the Zürich classification system and/or their evolution, and on their magnetic configuration. Some uncertainties in the data and other effects are also discussed.  相似文献   

18.
对2001-2021年SOHO卫星的极紫外辐射测量数据,以及CHAMP,GRACE-A和SWARM-C卫星资料推导出的高分辨率大气密度数据进行统计分析,发现大气密度与极紫外测量值的相关系数大于密度与F10.7指数的相关系数,证实极紫外辐射在不同地方时的影响程度存在显著差异,从而驱动大气密度的周日变化。利用三颗卫星的高度差异揭示极紫外辐射对大气密度的加热效应在350~500 km范围随着高度增加而减弱。统计得到极紫外辐射影响在地方时和纬度上的空间差异:对夏季半球的影响大于冬季半球;在白天,对中纬度地区的影响高于赤道和高纬度地区;在夜间,密度对辐射的斜率在夏季半球高纬度地区存在峰值,在冬季半球中纬度存在谷值,模型DTM2000和NRLMSISE00未能准确刻画。为了改进经验模型,提出基于球谐函数的拟合方法,优于主流模型周日效应采用的表达式,对周日效应建模和修正提供有益借鉴。利用昼夜间能量传输和热层大气经向环流机制探讨了统计结果的物理机制。  相似文献   

19.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   

20.
The development of significantly improved representations of solar EUV inputs for computer-aided investigations of the terrestrial thermosphere and ionosphere has become attractive particularly for the present solar cycle which has been covered by reasonably complete and continuous EUV observations from the AE-E Satellite. These representations try to satisfy some rather incongruous requirements of spectral detail, regarding (a) the strong wavelength-dependence in the terrestrial atmospheric cross sections of the various types of EUV photon interactions, (b) the great differences in the relative amplitudes of the various types of variations in the full-disk fluxes of solar emissions at different wavelengths, and (c) the persisting desire to use only a small number of daily indices as actual input variables for computational models supposed to cover the entire EUV wavelength range (remembering the great success of empirical thermospheric models using only two indices). These general physical and specific aeronomical demands indeed outline a very difficult task. The present study, based mainly on AE-E satellite observations during 1976–1979, represents an exploratory step, only clarifying some important developmental aspects, without recommending any specific formulations for immediately practicable adoption in aeronomical modelling at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号