共查询到20条相似文献,搜索用时 0 毫秒
1.
H. Fuke D. AkitaI. Iijima N. IzutsuY. Kato J. KawadaY. Matsuzaka E. MizutaM. Namiki N. NonakaS. Ohta Y. SaitoM. Seo A. TakadaK. Tamura M. ToriumiK. Yamada T. YamagamiT. Yoshida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Since 1971, numerous balloons have been launched from the Japanese balloon base, the Sanriku Balloon Center (SBC). Through these years, balloon technologies have been developed continuously and many scientific achievements have resulted. Recently, however, because of the limited area of the launching pad of the SBC, we have been faced with the difficulty of safely launching large balloons. To solve this issue, we decided to move the balloon base from the SBC to the Taiki Aerospace Research Field (TARF) in northern Japan. The TARF had an existing huge hanger and a paved launch pad capable of being utilised for balloon operations. To evolve the TARF into a new balloon base, new balloon facilities have been constructed at the TARF and equipment was transferred from the SBC to the TARF during July 2007 and March 2008. The SBC was closed in September 2007, and the new base became operational in May 2008. The new base at the TARF is designed to launch larger balloons with greater safety and to perform balloon operations more effectively than ever before. In the summer of 2008, we carried out the first series of the balloon campaign at the TARF, and succeeded in two engineering flights of stratospheric balloons. By the success of these flights, we have verified that the whole system of the new balloon base is well established. 相似文献
2.
M. Taraba H. Fauland T. Turetschek W. Stumptner V. Kudielka D. Scheer B. Sattler A. Fritz B. Stingl H. Fuchs B. Gubo S. Hettrich A. Hirtl E. Unger A. Soucek N. Frischauf G. Grömer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Passepartout sounding balloon transportation system for low-mass (<1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads. 相似文献
3.
R.M. Gunasingha A.R. Fazely J.H. Adams Jr. H.S. Ahn G.L. Bashindzhagyan K.E. Batkov J. Chang M. Christl O. Ganel T.G. Guzik J. Isbert K.C. Kim E.N. Kouznetsov M.I. Panasyuk A.D. Panov W.K.H. Schmidt E.S. Seo N.V. Sokolskaya J.W. Watts J.P. Wefel J. Wu V.I. Zatsepin Z.W. Lin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have performed a detailed Monte-Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x–y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2005 MC calculations with GEANT calculations and with the ATIC CERN data. 相似文献
4.
中国空间科学学会成立的40年,是中国空间探测逐渐走进世界舞台的40年,空间探测极大推动了空间科学和相邻学科的发展,也影响到经济、军事和日常生活诸多方面.本文简要回顾了从空间探测专业委员会成立的1980年至今,中国空间探测领域的主要发展历程,包括探空火箭、高空气球、科学卫星、月球与行星探测、载人航天空间探测、遥感卫星地面站等主要项目、进展和所取得的成果,对未来若干年空间探测的发展进行了展望. 相似文献
5.
Q. Liu Z. Wu M. Zhu W.Q. Xu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details. 相似文献
6.
Y. Saito D. AkitaH. Fuke N. Izutsu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The tandem balloon system has been known as a candidate system for long duration flight balloons. In this paper, the properties of the system are analytically studied in a new way by introducing an extendable suspension wire in the Sky Anchor configuration, which consists of a zero-pressure main balloon suspending a payload and a super-pressure balloon suspended below the payload. It was found that extension of the suspension wire between the payload and the super-pressure balloon can extend the capability of the tandem system; the altitude of the zero-pressure balloon can be changed without any consumables except some energy, and the day–night oscillation of the balloon altitude can be suppressed. This property is useful as the vehicle for long duration flights. It is also pointed out that the method to control the altitude of a balloon using an additional suspended super-pressure balloon can also be applied for super-pressure balloons. 相似文献
7.
H. Fuke N. Izutsu D. Akita I. Iijima Y. Kato J. Kawada K. Matsushima Y. Matsuzaka E. Mizuta M. Namiki N. Nonaka S. Ohta Y. Saito T. Sato M. Seo Y. Shoji A. Takada K. Tamura M. Toriumi K. Yamada T. Yamagami T. Yoshida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The super-pressure balloon (SPB) has been expected to be a flight vehicle that can provide a long flight duration to science. Since 1997, we have developed the SPB. Now we are at the phase of developing an SPB of a practical size. In 2009, we carried out a test flight of a pumpkin-shaped SPB with a 60,000 m3 volume. The undesirable result of this flight aroused us to resolve the deployment instability of the pumpkin-shaped SPB, which has been known as one of the most challenging issues confronting SPB development. To explore this deployment issue, in 2010, we carried out a series of ground tests. From results of these tests, we found that an SPB design modified from pumpkin, named “tawara”, can be a good candidate to greatly improve the deployment stability of the lobed SPB. 相似文献
8.
X.-Y. Zhou D. Lummerzheim G.R. Gladstone S.D. Gunapala S.B. Bandara J. Trihne L. Herrell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Daylight auroral imaging is a proposed application of the NASA high-altitude long-duration balloon technology. This paper discusses the theoretical background of this application and test observations, for proof of the feasibility. It is demonstrated that nitrogen auroral emissions in the near-infrared band are detectable at altitudes of 35–40 km and above using a near-infrared InGaAs camera. The purpose of such observations is to identify auroral small-scale structures that are manifestations of auroral particle accelerations and the solar wind – magnetosphere – ionosphere interaction. Use of this new approach will enable studies of the dayside aurora, low-latitude aurora, and storm-time and substorm-time auroral conjugacy. 相似文献
9.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(11):2005-2014
Current status of scientific ballooning in Japan is reviewed. First, I describe successful application of balloon technologies to construct a vessel of transparent plastic film, to contain about 1000 tons of liquid scintillator in Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND is a project to study neutrino oscillation phenomena, by detecting anti-neutrinos produced in distant nuclear reactors. Next, I describe high altitude balloons developed by the ISAS balloon group. They developed balloons made from ultra-thin polyethylene film, producing a balloon of volume 60,000 m3 which successfully reached an altitude of 53 km in 2002. This is a world record, the greatest altitude that a balloon has ever achieved. ISAS is applying further effort to develop balloons with even thinner films, to achieve a higher altitude than 53 km. Other recent activities by the ISAS balloon group are briefly described.I also review scientific ballooning projects now operating in Japan, particularly focusing on the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS) program. This is a US–Japan collaborative program that has carried out very precise measurements of antiprotons, protons and other components in primary cosmic rays, as well as measuring the fluxes of atmospheric muons and other components. The results of these observations give us important information to improve our understanding of the production mechanism of antiprotons observed in the primary cosmic rays. The data are also important for analysis of atmospheric neutrino events observed by Super-Kamiokande and other ground-based neutrino detectors. Future prospects of BESS and other balloon-borne cosmic-ray research programs are also presented. 相似文献
10.
Daisuke Akita 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Sea-anchored balloons are stratospheric super-pressure balloons that are anchored to the sea. The sea-anchored balloon is a simple system that has the capability for long-duration flights, fixed-point observations, flexible launch windows, easy telemetry links to ground stations, and quick recoveries. Such balloons are not required to fly through the jet stream while tethered to the ground or sea, because the tether is deployed from a reel on the balloon after reaching a floating altitude. In this study, the feasibility of the sea-anchored balloon is investigated, with particular emphasis on the tether strength, balloon altitude, and system mass, based on the present technological level of the tether’s specific strength. Although the wind distribution with altitude is a dominant factor for feasibility, a sea-anchored balloon with an altitude of about 25 km would be feasible if the velocity of the jet stream is sufficiently low. The sea-anchored balloon can be simply flight-tested, since additional ground facilities and special flight operations are not necessary. 相似文献
11.
U.M. Leloglu E. Kocaoglan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Although it is generally agreed that the outer space should be used for the benefit of all mankind, only a fraction of the countries have the necessary technological base for accessing space. Space technology, with its implications on science, economy and well-being of citizens, is mostly chosen as one of the priority areas for technological development by developing countries. However, there is already an over-capacity in global space industry and there are doubts on necessity of additional capacity establishment by developing countries. In this study, the importance and benefits of capacity-building in these countries are emphasized and the advantages and disadvantages that developing countries have in the framework of space technology acquisition are briefly presented. The feasibility of certain levels of space technology is discussed and the necessity of combining existing indigenous capabilities with technology obtained from foreign sources in the optimal way is stressed. We have also mentioned various general mechanisms of technology transfer and argued the importance of licensing in catching-up developed countries. After considering the necessary conditions of efficiency of technology, such as establishment of regional centers of space science and technology education by United Nations, joint development of space systems, complete technology transfer packages, cooperative space projects within regional organizations, coordinated constellations and special agreements with large space agencies, which are specific mechanisms already in use, are reviewed. Some typical examples of mechanisms are also given with special emphasize on small satellite technology that makes access to space affordable for many countries. Through sharing and analyzing the experience of developing countries in their odyssey of space capacity-building, the difficulties can be negotiated and the vicious circles can be broken. This study, in our view, is a step to incite a general discussion of obstacles and opportunities for developing countries, that could help them in using their limited resources effectively, hence, enable them to offer better conditions to their citizens and to contribute space science to a larger extend. 相似文献
12.
P.S. Marrocchesi H.S. Ahn P. Allison M.G. Bagliesi L. Barbier J.J. Beatty G. Bigongiari T.J. Brandt J.T. Childers N.B. Conklin S. Coutu M.A. DuVernois O. Ganel J.H. Han J.A. Jeon K.C. Kim M.H. Lee L. Lutz P. Maestro A. Malinine S. Minnick S.I. Mognet S.W. Nam S. Nutter I.H. Park N.H. Park E.S. Seo R. Sina P. Walpole J. Wu J. Yang Y.S. Yoon R. Zei S.Y. Zinn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2002-2009
Launched from McMurdo (Antarctica) in December 2005, the balloon experiment CREAM (cosmic ray energetics and mass) collected about 15 million triggers during its second flight of 28 days. Redundant charge identification, by two pixelated silicon arrays and a time resolved pulse shaping technique from a scintillator system, allowed a clear signature of the primary nuclei. The energy was measured with a tungsten/SciFi calorimeter preceded by a graphite target. Preliminary results from the analysis of the data of the second flight are presented. 相似文献
13.
A.V. Agapitov O.K. CheremnykhA.S. Parnowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1682-1687
We investigate the generation of ballooning perturbations in the inner magnetosphere of the Earth in the dipole model of the geomagnetic field taking into account ionospheric boundary conditions. The ionosphere is considered as a thin layer with finite conductivity. The eigenmode spectrum is discrete and consists of Alfvén, slow magnetosonic, flute and incompressible modes. Their interaction depends on ionospheric conductivity. The decay rate is small in noon and night sectors and large in dawn and dusk sectors. The lowest stability threshold α/γ ≈ 4.25 is determined by flute modes. 相似文献
14.
15.
J. Chang J.H. Adams Jr. H.S. Ahn G.L. Bashindzhagyan K.E. Batkov M. Christl A.R. Fazely O. Ganel R.M. Gunashingha T.G. Guzik J. Isbert K.C. Kim E.N. Kouznetsov Z.W. Lin M.I. Panasyuk A.D. Panov W.K.H. Schmidt E.S. Seo N.V. Sokolskaya John W. Watts J.P. Wefel J. Wu V.I. Zatsepin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed for high energy cosmic ray ion detection. The possibility to identify high energy primary cosmic ray electrons in the presence of the ‘background’ of cosmic ray protons has been studied by simulating nuclear-electromagnetic cascade showers using the FLUKA Monte Carlo simulation code. The ATIC design, consisting of a graphite target and an energy detection device, a totally active calorimeter built up of 2.5 cm × 2.5 cm × 25.0 cm BGO scintillator bars, gives sufficient information to distinguish electrons from protons. While identifying about 80% of electrons as such, only about 2 in 10,000 protons (@ 150 GeV) will mimic electrons. In September of 1999 ATIC was exposed to high-energy electron and proton beams at the CERN H2 beam line, and this data confirmed the electron detection capabilities of ATIC. From 2000-12-28 to 2001-01-13 ATIC was flown as a long duration balloon test flight from McMurdo, Antarctica, recording over 360 h of data and allowing electron separation to be confirmed in the flight data. In addition, ATIC electron detection capabilities can be checked by atmospheric gamma-ray observations. 相似文献
16.
Analytical study on the inflated shape of a super pressure balloon covered with a diamond-shaped net
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):705-719
In the last two decades, extensive efforts have been made to develop a large super pressure balloon (SPB) capable of carrying heavy payloads for scientific observations of long durations. Due to recent achievements by the NASA Balloon Program Office, practical operations of large-scale lobed-pumpkin SPB will be realized in the near future. Meanwhile, the research team initiated the development of a lightweight SPB with an alternative design concept, in which the entire balloon is covered by a diamond-shaped net. In this work, the static structural response of the proposed SPB is analyzed by establishing a mathematical model to predict its inflated shape. This model is validated by comparing the generated results with those obtained from nonlinear finite element analysis. Excellent agreement between the analytical solutions and the corresponding finite element results was obtained. On the basis of the mathematical model, the inflated shape of the SPB is investigated and unique structural characteristics are deduced, i.e., the balloon inflates into a cylinder-like shape for a certain geometry of the cover net. This structural feature can be explained by considering the equilibrium of forces applied to the cover net. 相似文献
17.
China's Chang'E-4 probe successfully landed on 3 January 2019 in Von Kármán crater within the South Pole-Aitken (SPA) basin on the lunar far side. Based on the data acquired by the scientific payloads onboard the lander and the rover, the researchers obtained the related information such as the geologic and tectonic setting of the landing area, compositional characteristics of the landing surface materials, dielectric permittivity and density of the lunar soil. The experiments confirmed the existence of materials dominated by olivine and low-calcium pyroxene in the SPA basin on the lunar far side, which preliminary revealed the geological evolution history of the SPA basin and even that of the early time lunar crust, as well as the tectonic setting and formation mechanism of the materials in the lunar interior. The researchers also inves-tigated the particle radiation, Linear Energy Transaction (LET) spectrum, and so forth on the lunar surface. The low-frequency radio observations were carried out on the lunar far side for the first time as well. This article summarizes the latest scientific results in the past years, focusing on the Chang'E-4 mission. Key words CLEP, Chang'E-4, Scientific objectives, Scientific payloads, Scientific results 相似文献
18.
J.L. Hall D. Fairbrother T. Frederickson V.V. Kerzhanovich M. Said C. Sandy J. Ware C. Willey A.H. Yavrouian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed. 相似文献
19.
J.L. Hall V.V. Kerzhanovich A.H. Yavrouian G.A. Plett M. Said D. Fairbrother C. Sandy T. Frederickson G. Sharpe S. Day 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 m3 and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance. 相似文献
20.
B. Suneel Kumar S. Sreenivasan J.V. Subba Rao R.K. Manchanda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of −90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the ‘ANTRIX’ film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years. 相似文献