首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   

2.
    
We present the first public database of high-energy observations of all known Galactic supernova remnants (SNRs). In Section 1 we introduce the rationale for this work motivated primarily by studying particle acceleration in SNRs, and which aims at bridging the already existing census of Galactic SNRs (primarily made at radio wavelengths) with the ever-growing but diverse observations of these objects at high-energies (in the X-ray and γγ-ray regimes). In Section 2 we show how users can browse the database using a dedicated web front–end (http://www.physics.umanitoba.ca/snr/SNRcat). In Section 3 we give some basic statistics about the records we have collected so far, which provides a summary of our current view of Galactic SNRs. Finally, in Section 4, we discuss some possible extensions of this work. We believe that this catalogue will be useful to both observers and theorists, and timely with the synergy in radio/high-energy SNR studies as well as the upcoming new high-energy missions. A feedback form provided on the website will allow users to provide comments or input, thus helping us keep the database up-to-date with the latest observations.  相似文献   

3.
Recently the H.E.S.S. collaboration announced the detection of an unidentified gamma-ray source with an off-set from the galactic plane of 3.5°: HESS J1507-622. If the distance of the object is larger than about one kpc it would be physically located outside the galactic disk. The density profile of the ISM perpendicular to the galactic plane, which acts as target material for hadronic gamma-ray production, drops quite fast with increasing distance. This fact places distance dependent constraints on the energetics and properties of off-plane gamma-ray sources like HESS J1507-622 if a hadronic origin of the gamma-ray emission is assumed. For the case of this source it is found that there seems to be no simple way to link this object to the remnant of a stellar explosions.  相似文献   

4.
Observations show that the magnetic field in young supernova remnants (SNRs) is significantly stronger than can be expected from the compression of the circumstellar medium (CSM) by a factor of four expected for strong blast waves. Additionally, the polarization is mainly radial, which is also contrary to expectation from compression of the CSM magnetic field. Cosmic rays (CRs) may help to explain these two observed features. They can increase the compression ratio to factors well over those of regular strong shocks by adding a relativistic plasma component to the pressure, and by draining the shock of energy when CRs escape from the region. The higher compression ratio will also allow for the contact discontinuity, which is subject to the Rayleigh–Taylor (R–T) instability, to reach much further out to the forward shock. This could create a preferred radial polarization of the magnetic field. With an Adaptive Mesh Refinement MHD code (AMRVAC), we simulate the evolution of SNRs with three different configurations of the initial CSM magnetic field, and look at two different equations of state in order to look at the possible influence of a CR plasma component. The spectrum of CRs can be simulated using test particles, of which we also show some preliminary results that agree well with available analytical solutions.  相似文献   

5.
The investigation of the general properties of non-thermal (NT) X-ray shell supernova remnants (SNRs), of which SN 1006 is the prototype, is important to understand how electrons are accelerated in SNR shocks and what is the origin of cosmic rays. Using the XMM-Newton satellite, we are carrying on a survey of putative non-thermal SNR candidates previously unknown or little studied in the X-ray band, in order to investigate the different manifestations of NT emission in SNR shells. The SNRs we have selected are likely to expand in a low density medium, and therefore to have a low thermal X-ray emission, that usually outshines the non-thermal one. We report here preliminary results obtained on the SNR shell DA 530.  相似文献   

6.
The propagation of cosmic rays in the interstellar medium after their release from the sources – supernova remnants – can be attended by the development of streaming instability. The instability creates MHD turbulence that changes the conditions of particle transport and leads to a non-linear diffusion of cosmic rays. We present a self-similar solution of the equation of non-linear diffusion for particles ejected from a SNR and discuss how obtained results may change the physical picture of cosmic ray propagation in the Galaxy.  相似文献   

7.
    
The CALorimetric Electron Telescope, CALET, mission is proposed for the observation of high-energy electrons and gamma-rays at the Exposed Facility of the Japanese Experiment Module on the International Space Station. The CALET has a capability to observe the electrons (without separation between e+ and e) in 1 GeV–10 TeV and the gamma-rays in 20 MeV–several TeV with a high-energy resolution of 2% at 100 GeV, a good angular resolution of 0.06 degree at 100 GeV, and a high proton-rejection power of nearly 106. The CALET has a geometrical factor of 1 m2sr, and the observation period is expected for more than three years. The very precise measurement of electrons enables us to detect a distinctive feature in the energy spectrum caused from WIMP dark matter in the Galactic halo. The excellent energy resolution of CALET, which is much better than GLAST or air Cherenkov telescopes over 10 GeV, enables us to detect gamma-ray lines in the sub-TeV region from WIMP dark matter annihilations. The CALET has, therefore, a unique capability to search for WIMP dark matter by the hybrid observations of electrons and gamma-rays.  相似文献   

8.
    
A short history of the beginning of cosmic ray (CR) astrophysics is considered: from the hypothesis on CR origin as a result of Supernova explosions in the Metagalaxy, to a model of solar origin of CR, galactic origin based on the stochastic mechanism of charged particle acceleration in interstellar space, to extragalactic and hierarchical models of CR origin, as well as galactic CR origin taking into account radio-astronomical data. We consider also the first balloon results on the chemical contents of primary CR (especially of the contents Li, Be, B), important for any model of CR origin. Investigations of the injection problem, CR drift and diffusion acceleration by shock waves, and CR generation in Supernova remnants were also important steps in the beginning of CR astrophysics.  相似文献   

9.
We present the preliminary results of a Chandra X-ray study of N132D, a young shell-like supernova remnant (SNR) in the Large Magellanic Cloud. The equivalent width maps of emissions from O, Ne, Mg, Si, and S are provided. Spatially resolved spectral analysis for the small-scale regions were tentatively performed. X-ray spectra of the interior can be described with a single-thermal model. The faint interior regions have lower density, higher temperature above 1 keV than that of bright interior regions. The X-ray spectra along the shell can be phenomenally fitted with either a double-vpshock model or a vpshock + powerlaw model. If the non-thermal component is true, N132D would be listed as another X-ray synchrotron SNR.  相似文献   

10.
    
We have observed the Cygnus Loop from the northeast (NE) to the southwest (SW) with XMM-Newton. We extracted spectra from 3′-spaced annular regions across the Loop and fitted them either with a one-kTe-component non-equilibrium ionization (NEI) model or with two-kTe-component NEI model. We found that the two-kTe-component model yields significantly better fits in almost all the spectra than the one-kTe-component model. Judging from the abundances, the high-kTe-component in the two-temperature model must be fossil ejecta while the low-kTe-component comes from the swept-up interstellar medium (ISM). The distributions of Ne, Mg, Si, and S for fossil ejecta appear to retain the onion-skin structure at the time of a supernova explosion, suggesting that significant overturning of the ejecta has not occurred yet. Comparing the relative abundances of fossil ejecta estimated for the entire Cygnus Loop with those from theoretical calculations for Type-II SN, the mass of the progenitor star is likely to be ∼13 M. The trends of the radial profiles of kTe and emission integral for the swept-up ISM are adequately described by the Sedov model, suggesting that the swept-up ISM is concentrated in a shell-like structure. Comparing our data with the Sedov model, we found the ambient medium density to be ∼0.7 cm−3. Then, we estimated the total mass of the swept-up ISM and the age of the remnant to be ∼130 M and 13,000 years, respectively. Note that if the explosion occurred within a stellar wind cavity, then the density in the cavity, the total swept-up mass in the cavity, and the age of the remnant are estimated to be ∼0.14 cm−3, ∼25 M, and ∼10,000 years, respectively.  相似文献   

11.
We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ∼1017 eV.  相似文献   

12.
Using Chandra X-ray, Spitzer mid-IR, and 1.5 GHz radio data, we examine the spatial structure of SNR 3C 391. The X-ray surface brightness is generally anti-correlative with the IR and radio brightness. The multiband data clearly exhibit a heart-shaped morphology and show the multi-shell structure of the remnant. A previously unseen thin brace-like shell on the south detected at 24 μm is projected outside the radio border and confines the southern faint X-ray emission. The leading 24 μm knot on the SE boundary appears to be partly surrounded by soft X-ray emitting gas. The mid-IR emission is dominated by the contribution of the shocked dust grains, which may have been partly destroyed by sputtering.  相似文献   

13.
14.
I discuss morphology and spectrum of the first resolved and detected classical nova shell in the X-rays – the remnant of GK Persei (1901). The existence of such a nebulosity brings about the possibility of other nova remnants emitting X-rays. I calculate that the X-ray luminosity should be about 1026–1033 ergs s−1 on the onset of cooling for nova remnants. I have done an archival search on 250 classical and recurrent nova candidates using Chandra, XMM-Newton, ROSAT and ASCA databases. There is no significant extended emission detected which places an upper limit of Fx < × 10−12 erg s−1 cm−2 (unabsorbed). Only exceptions are GK Per, RR Pic and DQ Her (all observed by Chandra ACIS-S and GK Per also by ROSAT HRI) where the latter two show marginal extended emission in the X-rays associated with emission knots (DQ Her) or an equatorial ring (RR Pic).  相似文献   

15.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.  相似文献   

16.
    
We report the discovery of recombining plasmas in three supernova remnants (SNRs) with the Suzaku X-ray astronomy satellite. During SNR’s evolution, the expanding supernova ejecta and the ambient matter are compressed and heated by the reverse and forward shocks to form an X-ray emitting hot plasma. Since ionization proceeds slowly compared to shock heating, most young or middle-aged SNRs have ionizing (underionized) plasmas. Owing to high sensitivity of Suzaku, however, we have detected radiative recombination continua (RRCs) from the SNRs IC 443, W49B, and G359.1–0.5. The presence of the strong RRC is the definitive evidence that the plasma is recombining (overionized). As a possible origin of the overionization, an interaction between the ejecta and dense circumstellar matter is proposed; the highly ionized gas was made at the initial phase of the SNR evolution in dense regions, and subsequent rapid adiabatic expansion caused sudden cooling of the electrons. The analysis on the full X-ray band spectrum of IC 443, which is newly presented in this paper, provides a consistent picture with this scenario. We also comment on the implications from the fact that all the SNRs having recombining plasmas are correlated with the mixed-morphology class.  相似文献   

17.
The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long duration balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, “pGAPS”, was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.  相似文献   

18.
宁强陨石的岩石学、矿物学及化学组成的研究表明,宁强陨石属于异常的CV3碳质球粒陨石,稀有气体和宇宙射线暴露年龄的测定结果与岩石学及化学组成的研究结果是一致的,宁强陨石的宇宙射线暴露年龄为42.2Ma,在CV3球粒陨石中是最高的,U/Th-4He及40K-40Ar气体保存年龄分别为4170±160Ma和4260±70Ma,这与碳质球粒陨石的气体保存年龄为4200Ma是一致的.  相似文献   

19.
Increasing observational evidence gathered especially in X-rays and γ-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the “knee” in the energy spectrum of Cosmic rays. This review summarises the current status of γ-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.  相似文献   

20.
我国某些球粒陨石及中铁陨石稀有气体的同位素丰度   总被引:2,自引:0,他引:2  
本文测定了剑阁球粒陨石、岩庄球粒陨石、亳县球粒陨石及渭源中铁陨石和新近降落的东乌珠穆沁中铁陨石的稀有气体同位素丰度,根据He、Ne及Ar的测定结果计算宇宙射线暴露年龄,剑阁、岩庄及亳县球粒陨石的宇宙射线暴露年龄分别为5.8Ma、2.5Ma及38.0Ma,东乌珠穆沁及渭源中铁陨石分别为172Ma及17Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号