共查询到20条相似文献,搜索用时 0 毫秒
1.
George Profitiliotis Maria Loizidou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):598-605
In light of the rapidly growing New Space Economy, the landscape of space exploration and development activities will certainly become much more complicated year by year. Relevant commercial space actors have already emerged, pushing the boundaries of entrepreneurial space ventures beyond the Earth-oriented upstream and downstream market segments and opening up the path towards the novel segments of space exploration, space resources utilization, and space research. Planetary protection is usually defined as a set of guidelines concerning the avoidance of bidirectional biological material exchange between the Earth and other celestial bodies. Recent success stories of established and new-entrant NewSpace actors, although posing no realistic planetary protection threat at present, clearly indicate that serious work needs to be done in order for the relevant guidelines to keep up with the rapid advances of the technology development cycles that occur within NewSpace companies. This need may become even more urgent, as space entrepreneurs acquire and develop the resources and competencies to target the currently underserved market segments of space research, exploration, and utilization. As of now, these capabilities were maintained solely by public space agencies; thus, all planetary protection priorities, strategies, and responsibilities were discussed, agreed-upon, and delegated for implementation among national and international working groups of public stakeholders. Although top-down regulations can be effective in controlling the quality and conformity of the deliverables of private subcontractors to public contractors, international planetary protection frameworks might need to evolve even beyond such unmet public-private interaction and partnership models. For this reason, this study did not focus on the legal and political issues of mandating NewSpace actors to adhere to planetary protection guidelines; rather, drawing from the field of sustainable development on Earth, an environmental economics approach was followed, with the goal of viewing the relationship between planetary protection and private space exploration and development as another “tragedy of the commons” problem that must be settled accordingly. After the problem’s framing, i.e. the conceptual presentation and synthesis of four extraterrestrial non-excludable goods, the initial approach of their total economic value, and the negative externalities of their exploitation, a discussion of the forward contamination mitigation costs was conducted. Drawing from the literature and using examples from both the terrestrial and aerospace sectors, a pre-emptive move was suggested: the establishment of a global industry consortium for the pre-competitive collaboration in forward contamination mitigation technologies, centered on an international planetary protection analogue program and its respective testbed facility. 相似文献
2.
Jacques Arnould André Debus 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars – for example, the technology constraints and physiological and psychological challenges – are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966]. 相似文献
3.
Alessia De Iuliis Francesco Ciampa Leonard Felicetti Matteo Ceriotti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(9):2795-2811
Literature on solar sailing has thus far mostly considered solar radiation pressure (SRP) as the only contribution to sail force. However, considering a sail in a planetary mission scenario, a new contribution can be added. Since the planet itself emits radiation, this generates a radial planetary radiation pressure (PRP) that is also exerted on the sail. Hence, this work studies the combined effects of both SRP and PRP on a sail for two case studies, i.e. Earth and Venus. In proximity of the Earth, the effect of PRP can be significant under specific conditions. Around Venus, instead, PRP is by far the dominating contribution. These combined effects have been studied for single- and double-sided reflective coating and including eclipse. Results show potential increase in the net acceleration and a change in the optimal attitude to maximise the acceleration in a given direction. Moreover, an increasing semi-major axis manoeuvre is shown with and without PRP, to quantify the difference on a real-case scenario. 相似文献
4.
Pascale Ehrenfreund Chris McKayJohn D. Rummel Bernard H. FoingClive R. Neal Tanja Masson-ZwaanMegan Ansdell Nicolas PeterJohn Zarnecki Steve MackwellMaria Antionetta Perino Linda BillingsJohn Mankins Margaret Race 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012,49(1):2-48
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts. 相似文献
5.
G.D. Aburjania L.S. Alperovich A.G. Khantadze O.A. Kharshiladze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):624-627
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field. 相似文献
6.
A new approach based on crater detection and matching for visual navigation in planetary landing 总被引:2,自引:0,他引:2
Meng Yu Hutao CuiYang Tian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper provides an approach of crater detection and matching to visual navigation in planetary landing missions. The approach aims to detect craters on the planetary surface and match them to a landmark database during the descent phase of a planetary landing mission. Firstly an image region pairing method is proposed to detect the crater by using an image region feature detector. Then a WTA-rule is adopted to match the detected crater to the crater in database. To further reduce the false matching rate, an efficient method for reducing false matches using parameters of crater in 3-D database is proposed. Real images of planetary terrain and a semi-physical planetary landing simulation platform are utilized to test the performance of the approach, simulation results show the proposed approach is able to match the required number of craters to the database for pin-point planetary landing with a low rate of false detection and false matching, which will lead to an improved planetary landing precision. 相似文献
7.
A consensus approach to planetary protection requirements: recommendations for Mars lander missions.
J D Rummel M A Meyer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):317-321
Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration. 相似文献
8.
J. Barengoltz J. Witte 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach. 相似文献
9.
Yoav Yair 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We present the latest observations from spacecraft and ground-based instruments in search for lightning activity in the atmospheres of planets in the solar system, and put them in context of previous research. Since the comprehensive book on planetary atmospheric electricity compiled by Leblanc et al. (2008), advances in remote sensing technology and telescopic optics enable detection of additional and new electromagnetic and optical emissions, respectively. Orbiting spacecraft such as Mars Express, Venus Express and Cassini yield new results, and we highlight the giant storm on Saturn of 2010/2011 that was probably the single most powerful thunderstorm ever observed in the solar system. We also describe theoretical models, laboratory spark experiments simulating conditions in planetary mixtures and map open issues. 相似文献
10.
V.V. Guryanov A.N. Fahrutdinova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area. 相似文献
11.
W. Schubert G. PlettA. Yavrouian J. Barengoltz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
For the purposes of planetary protection, a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine. Spores of Bacillus atrophaeus (ATCC No. 9372, also known as Bacillus subtilis var. niger, and BSN) were exposed to hydrazine and survivors were enumerated using the NASA standard planetary protection pour plate assay. Results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014,54(2):221-240
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration. 相似文献
13.
X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite 总被引:2,自引:0,他引:2
Yidi Wang Wei Zheng Shouming Sun Li Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The objective of this paper is to investigate and reduce the impact of the errors in the planetary ephemerides on X-ray pulsar-based navigation system for Earth-orbiting satellite. Expressions of the system biases caused by the errors in the planetary ephemerides are derived. The result of investigation has shown that the impact of the error in Earth’s ephemeris is must greater than the errors in the other ephemerides and would greatly degrade the performance of X-ray pulsar-based navigation system. Moreover, the system bias is modeled as a slowly time-varying process, and is handled by including it as a part of navigation state vector. It has been demonstrated that the proposed navigation system is completely observable, and some simulations are performed to verify its feasibility. 相似文献
14.
D. Sanz A. Barrientos M. Garzón C. Rossi M. Mura D. Puccinelli A. Puiatti M. Graziano A. Medina L. Mollinedo C. de Negueruela 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Planetary surface exploration is an appealing application of wireless sensor networks that has been investigated in recent years by the space community, including the European Space Agency. The idea is to deploy a number of self-organizing sensor nodes forming a wireless networked architecture to provide a distributed instrument for the study and exploration of a planetary body. To explore this concept, ESA has funded the research project RF Wireless for Planetary Exploration (RF-WIPE), carried out by GMV, SUPSI and UPM. The purpose of RF-WIPE was to simulate and prototype a wireless sensor network in order to assess the potential and limitations of the technology for the purposes of planetary exploration. 相似文献
15.
K. Durga Prasad S.V.S. MurtyT. Chandrasekhar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
A novel and versatile wireless light sensing device has been designed and tested for stellar and planetary photometric observations. The device weighing few 10 s of grams finds a number of potential applications in the fields of astronomy and in situ planetary exploration. A Wireless Sensor Network (WSN) using a number of these devices has been deployed to successfully carry out simultaneous photometric observations under different conditions viz. sunlight, twilight, moonlight etc. Observation of a star of known magnitude for flux calibration at low intensity has been carried out by coupling the device to a 1.2 m telescope which demonstrates its sensitivity. A WSN using these devices is further capable of spatio-temporal investigations of sky background intensities. Such a network can also be used to effectively monitor certain astronomical events (lunar eclipse, asteroid occultation etc.) simultaneously from several locations. The capability of the device, level of miniaturization and its versatility makes it a potential tool for many photometric applications. 相似文献
16.
Ravi teja Nallapu Jekan Thangavelautham 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(11):3559-3582
This work describes the design and optimization of spacecraft swarm missions to meet spatial and temporal visual mapping requirements of missions to planetary moons, using resonant co-orbits. The algorithms described here are a part of Integrated Design Engineering and Automation of Swarms (IDEAS), a spacecraft swarm mission design software that automates the design trajectories, swarm, and spacecraft behaviors in the mission. In the current work, we focus on the swarm design and optimization features of IDEAS, while showing the interaction between the different design modules. In the design segment, we consider the coverage requirements of two general planetary moon mapping missions: global surface mapping and region of interest observation. The configuration of the swarm co-orbits for the two missions is described, where the participating spacecraft have resonant encounters with the moon on their orbital apoapsis. We relate the swarm design to trajectory design through the orbit insertion maneuver performed on the interplanetary trajectory using aero-braking. We then present algorithms to model visual coverage, and collision avoidance in the swarm. To demonstrate the interaction between different design modules, we relate the trajectory and swarm to spacecraft design through fuel mass, and mission cost estimations using preliminary models. In the optimization segment, we formulate the trajectory and swarm design optimizations for the two missions as Mixed Integer Nonlinear Programming (MINLP) problems. In the current work, we use Genetic Algorithm as the primary optimization solver. However, we also use the Particle Swarm Optimizer to compare the optimizer performance. Finally, the algorithms described here are demonstrated through numerical case studies, where the two visual mapping missions are designed to explore the Martian moon Deimos. 相似文献
17.
S. Chung R. Kern R. Koukol J. Barengoltz H. Cash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. 相似文献
18.
Nikolai M. Gavrilov Andrey V. Koval Alexander I. Pogoreltsev Elena N. Savenkova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1819-1836
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50–70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40–60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere. 相似文献
19.
V V Demidov A A Goncharov V B Osipov V I Trofimov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):251-255
The viewpoint of working group of Russian experts on the problem of planetary protection for future manned and unmanned Mars mission is presented. Recent data of Martian environment and on survival of terrestrial microorganisms in extreme conditions were used for detailed analysis and overview of planetary protection measures in regard to all possible flight situations including accidental landing. The special emphasis on "Mars-94" mission was done. This analysis resulted in revised formulation of spacecraft sterilization requirements and possible measures for their best implementation. New general combined approach to spacecraft sterilization was proposed. It includes penetrating radiation and heat treatment of spacecraft parts and components which is to be carried out before the final assembly of spacecraft and gaseous radiation sterilization of the whole spacecraft during the flight to Mars (or from Mars for return missions). 相似文献
20.
Nikolai M. Gavrilov Andrej V. Koval Alexander I. Pogoreltsev Elena N. Savenkova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Parameterization of dynamical and thermal effects of stationary orographic gravity waves (OGWs) generated by the Earth’s surface topography is incorporated into a numerical model of general circulation of the middle and upper atmosphere. Responses of atmospheric general circulation and characteristics of planetary waves at altitudes from the troposphere up to the thermosphere to the effects of OGWs propagating from the earth surface are studied. Changes in atmospheric circulation and amplitudes of planetary waves due to variations of OGW generation and propagation in different seasons are considered. It is shown that during solstices the main OGW dynamical and heat effects occur in the middle atmosphere of winter hemispheres, where changes in planetary wave amplitudes due to OGWs may reach up to 50%. During equinoxes OGW effects are distributed more homogeneously between northern and southern hemispheres. 相似文献