共查询到20条相似文献,搜索用时 15 毫秒
1.
X. Wang J.K. ShiG.J. Wang Y. Gong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity. 相似文献
2.
A.O. Akala E.O. Somoye A.B. Adeloye 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model. 相似文献
3.
利用2003-2016年期间子午工程海南站(19.5°N,109.1°E)数字测高仪观测到的电离层等离子体漂移数据,分析了高低两种太阳活动条件下纬向和垂直向漂移对近磁静、中等磁扰和强磁扰三种地磁活动水平的响应特性.结果表明:日间纬向漂移各季节均以西向为主,随地磁活动无明显变化,白天日出附近和夜间漂移在各季节均以东向为主,随地磁活动增强而减弱,减弱程度在分季最大,在夏季最小;日间垂直漂移在零值附近变化,且不受地磁活动和季节影响,日落附近漂移仅在分季受到地磁活动的抑制,午夜前垂直漂移在分季受到抑制,在冬季因强磁扰而反向,夏季无明显规律,子夜至日出后垂直漂移在各季节随地磁活动增强而减小.与赤道区Jicamarca相比,两地漂移对地磁活动的响应相近,但在幅度和相位上存在差异,这可能是两地区的地理位置、背景电场和风场结构等不同造成的. 相似文献
4.
A.O. Akala E.O. Oyeyemi E.O. Somoye A.B. Adeloye A.O. Adewale 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time. 相似文献
5.
Rashmi Patowary S.B. Singh Kalyan Bhuyan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The effect of geomagnetic storms on the F2 region was studied by calculating the deviation, ΔfoF2, of foF2 during 40 magnetic storms, ranging from moderate (Dst < −50 nT) to very intense (Dst < −200 nT) of the 21st solar cycle. In order to study the variation of storm-time foF2 with latitude, season and storm strength, ionosonde data were obtained from eight stations spanning a latitudinal range of +60–−60°. The stations chosen lay in a narrow longitudinal range of 140–151°, so that local time difference between the stations is practically negligible. The features exhibited by positive and negative phases were essentially different. The storm time ΔfoF2 clearly exhibited a latitudinal variation and this variation were found to be coupled with the seasonal variation. As for the variation with storm intensity, though ΔfoF2 was found to vary even between two storms of almost equal intensity, the amplitude of a positive or negative phase, |ΔfoF2max| showed a distinct upper limit for each intensity category of storms. 相似文献
6.
Xiukuan Zhao Baiqi Ning Libo Liu Gangbing Song 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper. 相似文献
7.
S.O. Ikubanni J.O. Adeniyi O.K. Obrou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities. 相似文献
8.
L.A. McKinnell E.O. Oyeyemi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. 相似文献
9.
磁暴对海南地区电离层扩展F的影响 总被引:1,自引:0,他引:1
利用2002年2月至2007年12月海南地区DPS-4测高仪观测数据, 用统计分析方法研究了磁暴对电离层扩展F的影响. 结果认为磁暴从整体上抑制了扩展F现象的发生. 但若把扩展F分为不同类型, 则结果却有所不同. 对于频率型(FSF), 在2002年和2003年磁暴对其有促发作用, 在2004---2007年有抑制作用; 对于区域型(RSF), 在2002---2005年磁暴对其有抑制作用, 在2006年和2007年, 对其有弱促发作用; 对于混合型(MSF), 在2002年磁暴对其有抑制作用, 在2003年和2004年有促发作用, 从2005年开始, 磁暴对其有抑制作用; 对于强区域型 (SSF), 在2002---2004年磁暴对其有抑制作用, 在2005年和2006年有促发作用, 2007年有弱抑制作用. 相似文献
10.
11.
Gustavo A. Mansilla Marta M. Zossi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The global ionospheric response to the geomagnetic storm occurred of 3 August 2010 is studied in terms of the ionospheric parameter foF2. Data from three longitudinal sectors (Asia/Pacific, Europe/Africa and America) are considered. Some new aspects of the storm time ionospheric behavior are revealed. Results of the analysis show that the main ionospheric effects of the storm under consideration are: (a) prior to the storm, Japanese, Australian and American stations show increases in foF2, irrespective of the local time. (b) During the main phase, the stations of mid latitudes of the American sector show positive disturbances (in the pre-dusk hours), which subsequently change to negative. (c) During the recovery phase of the magnetic storm long-duration positive disturbances are observed at mid-low latitudes of the African chain. Also positive disturbances are observed in the Australian sector. In the European sector long-duration negative disturbances are seen at mid-high latitudes during the last part of the recovery phase while at mid-low latitudes a positive disturbance is seen, followed by a negative disturbance. In general, the ionospheric storm effects show a clear hemispheric asymmetry. 相似文献
12.
A.D. Danilov A.V. Konstantinova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(12):4066-4077
The foF2 deviations from quiet conditions during three days preceding a magnetic storm are considered. The data of the Juliusruh station for the period of 1976–2010 are analyzed, and the results are compared to the similar analysis of the Slough data published earlier. A seasonal dependence of the deviations (events) is found: the probability of the events occurrence is higher in winter than in summer. This probability also depends on solar activity (it decreases with an increase in the F10.7 index) and the magnetic storm intensity (it decreases with an increase in the magnitude of the negative Dst index). The dependence of the events number on the local time of the storm onset (SO) and the time of the event prior to the SO moment is also analyzed. The results for both stations are in a good agreement and confirm the initial concept that the aforementioned events could be considered as precursors of the coming magnetic storm. 相似文献
13.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2225-2239
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage. 相似文献
14.
Arun Kumar Singh Shailendra Saini Rupesh M. Das 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3189-3199
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition. 相似文献
15.
O.S. Oyekola 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Measurements of the critical frequency, foF2 recorded over Ibadan: 7.4°N, 3.9°E (geographic), 6°S (dip angle) have been compared with the International Reference Ionosphere (IRI-2007) model for solar maximum geomagnetically quiet conditions, with a view to determining what modifications might bring about better predictions for the model. Our results reveal that the present version of IRI essentially reproduces diurnal trends and the general features of the experimental observations for all seasons, except for nighttime June solstice periods, which the model seriously overestimated. The model errors ranging from 50% to 125% over the four seasons considered in this study. It is also indicated that the percentage relative deviations between the observed and the modeled values vary approximately from −11% to 12% (March), −34% to 11% (June), −16% to 12% (September), and −10% to 13% (December). An unexpected feature of foF2 is obvious and remarkable reduction in values during nighttime June solstice periods compared to that in other seasons. Relationship between equatorial vertical drift and foF2 is also investigated. However, cross correlation analysis reveals strong anti-correlation between vertical drift and critical frequency during the daytime hours, but exceptionally opposite is the case for the nighttime sector. The discrepancies which are noted, particularly during June solstice season are attributed to processes most likely within the thermosphere and from meteorological influences during quiet magnetic conditions. 相似文献
16.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(5):661-667
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2. 相似文献
17.
Zhendi Liu Hanxian Fang Libin Weng Sicheng Wang Jun Niu Xing Meng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(6):1926-1936
A comparison of the ionospheric F-region critical frequency (foF2) between ionosonde measurements and IRI-2016 predictions is studied over China during the period from January 2008 to October 2016. Four stations are selected, and the latitude coverage starts at 49.4°N and ends at 23.2°N with a sequential latitude interval of about 10°, the corresponding geomagnetic latitudes are from 39.5°N to 13.2°N. The results show that the variability of the observed foF2 versus latitudes, seasons, local time and levels of solar activity could be well reproduced by IRI-2016. However, the daily lowest value of foF2 from the IRI-2016 prediction occurs earlier than that from the ionosonde. Around the sunrise, the IRI-2016 prediction shows a very sharp rise and grows much faster than the observed foF2 in every month. The foF2 difference between the two options (URSI and CCIR) in IRI-2016 increases as the F10.7 index decreases. During 2008–2009, the annual average deviations of URSI and CCIR range from ?5% to ?10% and from 5% to ?5%, respectively. Generally, the CCIR performs better than URSI during postsunset under low solar activity or in Equatorial Ionization Anomaly (EIA) region over China, while it shows no large difference in performance with URSI in other locations or for other time. 相似文献
18.
T. Azcárate B. Mendoza S. Sánchez de la Peña J.L. Martínez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results. 相似文献
19.
V. Ivanova V. Kurkin V. Ivanov G. Vertogradov V. Uryadov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
An estimation of the F2 ionospheric region critical frequency (foF2) variations using analysis of round-the-world radio sounding data has been made. Experimental data obtained by the Russian chirp-sounders network have been used. For the first time, using experimental data and numerical simulation, the quantitative dependency between the minimum foF2 magnitudes over round-the-world propagation paths and round-the-world maximum usable frequencies has been obtained. 相似文献
20.
E.O. Oyeyemi A.O. AdewaleA.B. Adeloye B. Olugbon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This paper discusses the ability of the International Reference Ionosphere IRI-2007 storm time model to predict foF2 ionospheric parameter during geomagnetic storm periods. Experimental data (based on availability) from two low latitude stations: Vanimo (geographic coordinates, 2.7 °S, 141.3 °E, magnetic coordinates, 12.3 °S, 212.50 °E) and Darwin (geographic coordinates, 12.45 °S, 130.95 °E, magnetic coordinates, 22.9 °S, 202.7 °E) during nine storms that occurred in 2000 (Rz12 = 119), 2001(Rz12 = 111) and 2003 (Rz12 = 64) are compared with those obtained by the IRI-2007 storm model. The results obtained show that the percentage deviation between the experimental and IRI predicted foF2 values during these storm periods is as high as 100% during the main and recovery phases. Based on the values of “relative deviation module mean” (RDMM) obtained (i.e. between 0.08 and 0.60), it is observed that there is a reasonable to poor agreement between measured foF2 values and the IRI-storm model prediction values during main and recovery phases of the storms under investigation. As a result, in addition to other studies that have been carried out from different sectors, more studies are required to be carried out. This will enable IRI community to improve on the present performance of the model. In general the IRI-storm model predictions follow normal trend of the foF2 measured values but does not reproduce well the measured values. 相似文献