首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Radial transport theory for inner radiation zone MeV He ions has been extended by combining radial diffusive transport, losses due to Coulomb friction and charge exchange reaction with local generation of 3He and 4He ions due to nuclear reactions taking place on the inner edge of the inner radiation zone. From interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield helium flux source that was numerically derived from a nuclear reaction model originally developed at the Institute of Nuclear Researches of Moscow, Russia and implemented in the computer system at the University of Campinas, Brazil. Magnetospheric transport computations have been made covering the L-shell range L=1.0 to 1.6 and the resulting MeV He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic He ion content.  相似文献   

2.
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons.  相似文献   

3.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   

4.
利用NOAA-15卫星1998年到2011年近13年的高能质子全向通量观测资料, 分析了一个太阳活动周内, 低高度内辐射带高能质子通量的分布变化特性及其物理原因, 比较了观测结果与AP8模型的不同. 研究表明, 低高度内辐射带高能质子通量与太阳活动水平的反相关关系与磁壳参数L值及磁场B值有关; L值越低, B值越大的空间点, 其高能质子通量与太阳活动水平的反向相关性越明显. 高能质子通量随太阳活动水平的变化存在明显滞后现象, L值越高、 B值越小的空间点, 滞后现象就越明显, 滞后严重时可以达到一年左右的时间; 这种滞后现象反映出低高度内辐射带高能质子的源与损失达到平衡是一个中长期过程. 通过与AP8模型计算结果的比较分析可以看出, 利用AP8模型时, 仅考虑地磁场长期变化对质子通量的影响可能会夸大低高度内辐射带局部高能质子通量的增强.   相似文献   

5.
At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64 – 35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of −1.2 cm−2 s−1 sr−1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1–3 days. Possible reasons for these unexpected phenomena are discussed.  相似文献   

6.
The object of investigation is the phenomenon of proton (from tens keV to several MeV) flux enhancement in near-equatorial region (L < 1.15) at altitude up to ∼1300 km (the storm-time equatorial belt). These fluxes are quite small but the problem of their origin is more interesting than the possible damage they can produce. The well known sources of these protons are radiation belt and ring current. The mechanism of transport is the charge-exchange on neutral hydrogen of exosphere and the charge-exchange on oxygen of upper atmosphere. Therefore this belt is something like the ring current projection to low altitudes. Using the large set of satellites data we obtain the average energy spectrum, the approximation of spectrum using kappa-function, the flux dependence on L, B geomagnetic parameters. On the basis of more than 30 years of experimental observations we made the empiric model that extends model of proton fluxes below 100 keV in the region of small L-values (L < 1.15). The model was realized as the package of programs integrated into COSRAD system available via Internet. The model can be used for revision of estimation of dose that low-orbital space devices obtain.  相似文献   

7.
The PET instrument aboard the SAMPEX satellite has provided us with long-term intra-calibrated observations of geomagnetically trapped protons and deuterons in the inner zone, suitable for use in constraining the low-altitude portions of radiation belt models being developed as successors to AP-8. These observations have been summarized elsewhere (Looper et al., 1996). Here we report a detection of geomagnetically-trapped tritium at energies from 14 to 35 MeV/nuc below L = 1.2, at about 1/8 the flux of deuterium previously reported at that location and at similar energy per nucleon. We also demonstrate the utility of the SAMPEX/PET observations for measuring the east-west anisotropy in the trapped particle flux at low altitudes, which is due to displacement of particle gyrocenters from the position of observation in a region of strong flux gradients. This anisotropy is implicitly ignored in omnidirectional radiation-flux models, but it can be important to mission planners considering how to distribute shielding over the surface of oriented spacecraft in low Earth orbit.  相似文献   

8.
研究FY-3A卫星观测到的内辐射带质子通量分布,发现3~5MeV能道出现除南大西洋异常区以外的第二个异常区.该异常区是一个质子通量的次极值区,由于该质子通量极值区比主南大西洋异常区强度弱、面积小,因此称之为次南大西洋异常区.通过在主南大西洋异常区和次南大西洋异常区分别选取有代表性的样本点进行研究,发现内辐射带质子通量随投掷角近似呈正态分布,当投掷角在90°附近时,质子通量出现极大值;当投掷角大于120°或者小于60°时,质子通量几乎为零.此外,主南大西洋异常区质子通量在各个能道均为完全各向异性,次南大西洋异常区质子通量随着能道增高逐渐趋于各向同性.通过NOAA观测数据对此规律进行了验证,并由此解释了次南大西洋异常区的形成机理.   相似文献   

9.
10.
Relativistic electrons (with energies >150 keV) which originate in the outer radiation belt and detected by the Russian ‘Meteor’ series of satellites have been correlated with the atmospheric total ozone data compiled by almost 90 stations located around the world within the latitude zone 40°–70°N. In more than 60% of the stations examined we have detected a clear decrease of the ozone 3–5 days after the electron flux excess. A numerical model has been applied to approximate this effect based on relativistic electron initiated nitric oxides creation in the upper mesosphere with subsequent atmospheric transport (both vertical and horizontal) towards the upper stratosphere. A first attempt of local and temporal prediction of ozone depletion because of energetic electrons impact in the middle atmosphere has been illustrated.  相似文献   

11.
The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment.  相似文献   

12.
Dosimeter data taken on the APEX (1994–1996), CRRES (1990–1991) and DMSP (1984–1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.  相似文献   

13.
质子辐射带辐射中心区域模型   总被引:2,自引:2,他引:0  
利用AP-8和CRRESPRO质子辐射带模式数据库, 比较了二者在磁赤道面上计算结果 的差异并给出其差异原因. 利用AP-8模式数据库数据, 建立起质子辐射带函数形式的辐射中心区域模式, 包括各能道全向微分通量峰值所对应的L值(Lc) 随能量E的变化模式以及各能道全向微分通量峰值Jmax随能量E的变化模式. 利用RBSP A卫星REPT望远镜在磁赤道面上的高能质子观测数据, 分别与 AP-8模式、CRRESPRO模式及本文所得辐射中心区域模式计算结果进行比较, 发现在78.9, 102.6和208MeV三个能道上, RBSP A卫星观测所得各能道全向微分 通量明显偏大, 而Lc与AP-8或本文辐射中心模式所得结果基本一致; RBSP A卫星也观测到CRRESPRO Quiet模式所得的隐性第二质子辐射带结构.   相似文献   

14.
Active instruments consisting of a tissue equivalent proportional counter (TEPC) and a proton and heavy ion detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of its features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestrial magnetic field the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at L approximately = 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect.  相似文献   

15.
通过对地球同步轨道高能电子监测数据(来自GOES)与风云二号卫星跳变事件的对比分析发现, 跳变事件均发生在高能电子增强事件即所谓高能电子暴期间, 因此初步断定, 跳变事件与高能电子引起的卫星介质深层充放电事件有关. 通过对不同通量高能电子增强事件期间所发生的跳变事件发生率进行量化计算, 给出跳变事件发生概率的计算方法, 为卫星在轨运行管理及防护提供参考.   相似文献   

16.
本文给出了我国卫星上半导体电子探测器的一些探测结果。通过对数据的分析,得到了内辐射带中心区电子通量的典型值,大于0.5MeV和1.0MeV两个能档的全向通量分别为1.9×108和6.7×107ele./s·cm2.同时也给出了在典型轨道上电子通量随时间的变化剖面。此外,还得到了同步高度上述两个能档电子的全向通量分别为20.43×106和4.25×105ele./s·cm2.同时也给出了观测到的同步高度外辐射带电子的日变化。结果与国外观测资料基本相符。   相似文献   

17.
A short review is given on the characteristics of Jupiter's inner magnetosphere derived from radio observations in the decimetric wavelength range. A comparison of the data with sophisticated model calculations yields information on the magnetic field configuration and the electron distribution, its density, energy spectrum, and pitch angle dependence as a function of spatial coordinates. The latter information can be used to derive e.g. the radial diffusion parameters plus the effects of the satellites, Jupiter's ring, and wave-particle interactions upon the electron distribution.  相似文献   

18.
Spectra of neutrons from interactions of primary cosmic rays in the earth's atmosphere are calculated with the Monte Carlo model fluka for various depths down to sea level. We discuss the environmental models describing the primary cosmic ray spectrum and details of the calculations. Neutron energy spectra are presented for different depths in the atmosphere and for different geographical locations. By comparing results of calculations to measurements on neutron spectra it is shown that fluka may serve as an important tool for the estimation of the radiation environment in the atmosphere.  相似文献   

19.
A stack of CR-39 track detectors was exposed on the NASA satellite LDEF and recovered after almost 6 years in space. The quick look analysis yielded heavy ion tracks on a background of low energy secondaries from proton interactions. The detected heavy ions show a steep energy spectrum which indicates a radiation belt origin.  相似文献   

20.
The effect of the proton flare of 22 November 1977 on the various levels in the middle atmosphere and the bottom-side ionosphere is studied in order to compare synchronous phenomena in the middle atmosphere with phenomena in upper regions and to investigate the response of middle atmosphere to the penetration of high energy solar particles and radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号