首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The galactic cosmic rays (GCR) are the main ionization source at altitude of ∼3–35 km in the atmosphere. For high latitude anomalous cosmic ray (ACR) component has also a significant influence on the atmospheric ionization. We propose an empirical model for differential spectra D(E) of galactic and anomalous cosmic rays in energy interval 1 MeV–100 GeV during solar cycle. In the model data are used which cover three solar cycles: 20, 22 and 23. The LEAP87, IMAX92, CAPRICE94, AMS98 and BESS experimental spectra for protons and alpha particles are fitted to the proposed empirical model. The modulated GCR differential spectra are compared with force-field approximation to the one-dimensional transport equation and with solutions of two-dimensional cosmic ray transport equation. For experimental spectra, the calculation of the model parameters is performed by Levenberg–Marquardt algorithm, applied to the special case of least squares. Algorithm that combines the rapid local convergence of Newton–Raphson method with globally convergent method for non-linear systems of equations is applied for theoretically obtained differential spectra. The described programmes are realized in algorithmic language C++. The proposed model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.  相似文献   

2.
In this paper we analyze the spatial distribution of galactic cosmic rays during periods of maximum solar activity of the cycles 21, 22 and 23. We have used a two dimensional model to solve the cosmic ray transport equation. This model includes all relevant physical processes: diffusion, convection, drift and shock effects on cosmic ray propagation inside the heliosphere. We focused on the study of the radial distribution of galactic cosmic rays, and compare our results with the spacecraft observations for two energies (175 MeV H and 265 MeV/n He). Although the radial intensities of galactic cosmic rays can be explained qualitatively with all three local interstellar spectra (LISs) used in this work, we applied a reduced chi-squared analysis to investigate the best LIS that could fit the data.  相似文献   

3.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

4.
As many great discoveries, the phenomenon of cosmic rays was discovered mainly accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. We describe the history how step by step cosmic rays was discovered and why this phenomenon received misnomer, how in cosmic rays was discovered the first antiparticle – positron. These discoveries were recognized among greatest in the 20th Century and were awarded by Nobel Prize.  相似文献   

5.
The intranuclear cascade model INCL4 has been shown to be very successful for describing, without adjustable parameters, a whole set of data for p-induced reactions in the 40 MeV–2 GeV energy range. In view of its possible application to cosmic ray interactions, the INCL4 code has been extended to the 2–15 GeV energy range, so covering a large part of the spectrum of the incident energy of the cosmic rays.  相似文献   

6.
For about the last 40 years, we have been trying to understand the propagation of cosmic rays and other energetic charged particles through the interplanetary medium. Identification of the basic processes affecting the propagation, namely diffusion, convection by the solar wind, adiabatic deceleration, and gradient and curvature drifts, was attained early on, but reaching detailed physical understanding, particularly of the roles of diffusion and gradient and curvature drifts, continues as an active topic of research to this day. Particularly unclear is the nature of the cross-field propagation. Many observations seem to require more efficient cross-field propagation than theoretical propagation models can easily produce. At the same time, there are other observations that seem to show strong guidance of the particles by the interplanetary magnetic field. With current measurements from spacecraft near Earth and from the Ulysses spacecraft, which samples nearly the complete range of heliographic latitudes in the inner heliosphere, critical tests of the ways in which cosmic rays and other energetic charged particles propagate through the interplanetary medium are possible. I briefly review the status of observations that are relevant to the characterization of diffusive propagation in the inner heliosphere and will present evidence for a possibly previously overlooked contribution from transport along magnetic flux tubes that deviate dramatically from the average interplanetary spiral configuration.  相似文献   

7.
The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.  相似文献   

8.
9.
Systematic recording of the cosmic radiation commenced in Hobart in 1946 and at Mawson in Antarctica in 1955, making these two of the longest running cosmic ray observatories in the world. For the IGY, observations were also made at a sub-Antarctic island and near the equator, and an airborne survey of the nucleonic component was made from Geomagnetic Latitude −60°, south of Australia, to Japan and back. At Hobart there were neutron monitors, vertical and inclined muon telescopes, an ionization chamber, and two muon telescopes at ∼40 m of water equivalent underground. The research based on these and other observations determined the energy dependence of the Forbush and 11-year variations and concentrated, in particular, on understanding the anisotropic nature of galactic cosmic rays up to 150 GeV; the anisotropies in the onset phase of Forbush decreases; and the anisotropies in solar cosmic ray events. An investigation was initiated to calculate the trajectories and cutoff rigidities of cosmic rays in a high order simulation of the geomagnetic field. This was completed in 1959–60.  相似文献   

10.
The random nature of sources (the supernova remnants) leads to the fluctuations of cosmic ray intensity in space and time. We calculate the expected fluctuations in a flat-halo diffusion model for particles with energies from 0.1 to 103 TeV. The data on energy spectra and anisotropy of very high energy protons, nuclei and electrons, and the astronomical data on supernova remnants, the potential sources of cosmic rays, are used to constrain the value of the cosmic-ray diffusion coefficient and its dependence on energy.  相似文献   

11.
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.  相似文献   

12.
Numerical solutions are presented for the propagation of solar cosmic rays interplanetary space, including the effects of pitch-angle scattering and adiabatic focusing. The intensity-time profiles can be well fitted by a simple radial spatial diffusion equation with scattering mean-free path λfit. For low-rigidity particles the radial mean-free path so obtained is significantly larger than the mean-free path calculated from the scattering coefficient due to the inapplicability of the diffusive approximation early in the event. The well-known discrepency between λfit and the theoretical predictions may be resolved by these calculations.  相似文献   

13.
Relative abundances of sub-iron (Sc-Cr) to iron nuclei in low energy (50–100 MeV/N) galactic cosmic rays have been determined from an analysis of about 100 events of heavy ions (Z = 10−28) recorded in a detector assembly flown in the Anuradha cosmic ray experiment in the Spacelab-3 on a six day mission in April–May 1985. The measured abundance ratio of (Sc-Cr)/Fe nuclei in 50–100 MeV/N energy range is 1.1 ± 0.3, and the present result of enhanced ratio of sub-iron to iron nuclei is in agreement with other experimental results in 200–800 MeV/N range. The over-abundance of iron secondaries at these low energies cannot be explained in the conventional models for propagation of cosmic rays. Available experimental data indicate a very different time history for the low energy iron-group, as compared to those of lighter nuclei in galactic cosmic rays.  相似文献   

14.
The origin of cosmic rays with energy E ? 1018 eV is a long-standing problem in astrophysics. The development of ever larger detectors has brought in key experimental results in the past decade, most particularly the detection of a cut-off at the expected position for the long sought Greisen–Zatsepin–Kuzmin suppression as well as evidence for large scale anisotropies. This paper summarizes and discusses the recent achievements in this field.  相似文献   

15.
The state of art of ground-based cosmic-ray research from its discovery to present is reviewed. After discovery of cosmic rays by Hess in 1912, the nature of the primary and secondary radiation was established from recordings by a variety of instruments, sensitive to various components of cosmic rays and operated at different latitudes, longitudes and altitudes, including instruments carried by balloons. The IGY formalized international co-operation and coordinated study of cosmic rays, which is vital for meaningful interpretation of cosmic-ray data. Data collected at different geographic locations require an effective cutoff rigidity as a data ordering parameter. This parameter is obtained from tracing trajectories of primary cosmic rays in the Earth’s magnetic field. After 50 years the world’s neutron monitor network remains still the backbone for studying intensity variations of primary cosmic rays in the rigidity ranges between 1 and 15 GV, associated with transport and with transient events. Also the penetrating muon and neutrino components of secondary cosmic rays have a long history of recording and fundamental problem investigations. Valuable data about composition and spectrum of primary cosmic rays in ever increasing high-energy regions have been obtained during the years of investigations with various configurations and types of extensive air shower detectors. The culture of personal involvement of the physicist in carrying out experiments and data acquisition characterized the continued vitality of cosmic-ray investigations ranging from its atmospheric, geomagnetic and heliospheric transport through to its solar and astrophysical origins.  相似文献   

16.
We discuss the main sources of uncertainties in the calculation of the positron and antiproton top of the atmosphere spectra using models including diffusion and convection or reacceleration. We show that, even including uncertainties, the models that include diffusion and convection are more consistent with existing measurements. The next generation experiments like PAMELA will help to reduce the uncertainties in the values of the main free parameters of the models, thus improving our knowledge of the origin and propagation of cosmic rays.  相似文献   

17.
Observations of charged particle fluxes in the stratosphere of the polar regions represent the cosmic rays variations with energy above 100 MeV. At the end of 2009 these fluxes reached the highest level for the time of observations from mid 1957 and were by 17% higher than the previous extremum value of May 1965. In the mean time the ground-based neutron monitors showed the remarkably less count rate enhancement. These results argue for the significant change in the energy spectrum of incoming particles in 2008–2009 in the energy range of ∼100–1500 MeV/n.  相似文献   

18.
An overview is given on the present status of the understanding of the origin of galactic cosmic rays. Recent measurements of charged cosmic rays and photons are reviewed. Their impact on the contemporary knowledge about the sources and acceleration mechanisms of cosmic rays and their propagation through the Galaxy is discussed. Possible reasons for the knee in the energy spectrum and scenarios for the end of the galactic cosmic-ray component are described.  相似文献   

19.
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1–8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445–448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449–450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003.) is similar to the current Schwadron–Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron–Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445–448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron–Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.  相似文献   

20.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号