首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A coherent data set of high-latitude dayside magnetopause encounters by old (Heos 2, Hawkeye, Prognoz 7, 8) and new (Polar, Interball Tail, Cluster) spacecraft is needed to build a realistic model of the magnetopause (MP) including an indentation in the cusp. In building such a coherent data set a caution is necessary as the dayside magnetopause at high-latitudes may be less clearly defined than in the case of observations at low latitudes. It is due to expected presence of bundles of newly-reconnected magnetic field lines forming an extended boundary layer on the magnetosheath (MS) side of the magnetopause in the cusp region. Moreover, numerical magnetohydrodynamic (MHD) models of the solar wind-magnetosphere interaction predict that under northward interplanetary magnetic field (IMF) an additional thin current sheet should form inside the magnetopause at high latitudes on the dayside (e.g., Wu, 1983; Palmroth et al., 2001). Such a thin currect sheet is absent in empirical magnetosphere models. This internal current sheet, if a real one, may be mistaken for the magnetopause if magnetic field data are only taken into account and/or plasma data are unavailable. The Interball-Tail orbit allows for a full transition of magnetopause boundary layers at high-latitudes. We compare plasma and magnetic field signatures of the magnetopause poleward of the cusp for southward and northward IMF. The distance between the magnetic signature of the magnetopause (the current layer) and a cold and laminarly antisunward flowing MS plasma (so called free-flow MS) was found to be 0.5 to 1 RE, at least. These observations were made under nominal solar wind of v350 km/s and pdyn=1 to 4 nPa. We also observed several transient magnetic field reversals in the cusp related to pulses of solar wind dynamic pressure and/or the IMF discontinuity arrival. These transient reversals occurred at the same distance to the model MP as well defined full MP crossing, so most probably they represent just short encounters with the magnetopause current layer. Our analysis suggests that an indentation of the magnetopause with a subtle structure dependent on the local magnetic shear would explain and allow to predict the magnetic configuration in the high-altitude cusp.  相似文献   

2.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   

3.
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

4.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

5.
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations.  相似文献   

6.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   

7.
In this study SuperDARN Cross Polar Cap Potentials (CPCPs), collected over the year 2000, are investigated with a goal to statistically assess its relationship with various parameters of the solar wind and Interplanetary Magnetic Field (IMF). We show that SuperDARN CPCPs tend to cluster around discrete values, prescribed by the statistical model, unless the amount of points on each convection map is above ∼300. By selecting CPCP data obtained with radar coverage of >300 points, we investigate the CPCP relationship with IMF Bz and By, IMF clock angle, solar wind speed and dynamic pressure, Alfven velocity, Alfven–Mach number, and interplanetary electric field. Some reported tendencies, such as dependence upon IMF Bz, were found to be consistent with measurements by other instruments. We demonstrate that SuperDARN CPCPs show consistency with several theories/empirical models (predicting the CPCP) in terms of a linear trend but, on average, the slopes of the dependencies are at least two times smaller. We also determine the coupling function, out of those published in literature, best correlating with SuperDARN CPCPs.  相似文献   

8.
Characteristics of low latitude boundary layer (LLBL) of the Earth’s magnetosphere are investigated using data of Interball/Tail probe observations. The role of different processes of LLBL formation is discussed. The high level of magnetosheath turbulence is taken into account. It is shown that the turbulent nature of magnetic field and plasma fluctuations in the magnetosheath is one of the main factors determining the structure of LLBL. The results of Interball/Tail probe observations of the event 9 March 1996 are analyzed. The thickness of LLBL is determined for the number of cases. The change of LLBL thickness under the influence of the changes of solar wind parameters is investigated. It is shown that variability of solar wind conditions can be the important factor controlling LLBL thickness. Results of observations are compared with the theory which explains the value of LLBL thickness as the result of plasma transport inside the magnetosphere. It is shown that the theory gives the qualitative explanation of the observed dependence of LLBL thickness on solar wind parameters.  相似文献   

9.
In this paper, we have used two closely spaced (INTERBALL-1 and MAGION-4) satellites orbiting in the region adjacent to the magnetopause with motivation to determine the structure of the cusp-magnetosheath boundary under steady solar wind conditions and under the northward interplanetary magnetic field (IMF). Two-point observations reveal that a steady reconnection takes place tailward of the cusp and the position of the reconnection site moves in accordance with the actual IMF direction. Reconnection produces a latitudinally dispersed cusp precipitation with highest energies in the cusp poleward edge. The reconnection site is widely spread in local time and thus changes of the IMF By component only slightly modulate observed patterns. The change of the plasma flow direction suggests the presence of the vortex-like structure in the exterior cusp.  相似文献   

10.
The earthward displacement of the magnetopause observed during a southward IMF (or the magnetopause erosion) and its dependence on the solar wind plasma and magnetic field parameters is studied by investigating data of about 30 magnetopause crossings by the ISEE 1 and 2 spacecraft. It is shown that the magnetopause erosion may be explained by a depression of the magnetic field intensity in the dayside magnetosphere caused by the penetration of the magnetosheath magnetic field (component perpendicular to the reconnection line) into the magnetosphere. The penetration coefficient (the ratio of the intensity of the penetrated field to the intensity of the magnetosheath magnetic field) is estimated and found to equal approximately 1.  相似文献   

11.
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasi-parallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.  相似文献   

12.
Magnetic reconnection is one of the most fundamental processes in the magnetosphere. We present here a simple method to determine the essential parameters of reconnection such as reconnected flux and location of the reconnection site out of single spacecraft data via remote sensing. On the basis of a time-dependent reconnection model, the dependence of the reconnected flux on the magnetic field z-component Bz is shown. The integral of Bz over time is proportional to the reconnected flux and depends on the distance between the reconnection site and the actual position where Bz is measured. This distance can be estimated from analysis of magnetic field Bz data. We apply our method to Cluster measurements in the Earth’s magnetotail.  相似文献   

13.
We present a comparison of large and sharp solar wind dynamic pressure changes, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field measured by the GOES-8, 9 and 10 geosynchronous satellites. Almost 400 solar wind pressure changes in the period 1996–2003 were selected for this study. Using the large statistics we confirmed that increases (decreases) in the dynamic pressure always results in increases (decreases) in the magnitude of geosynchronous Bz component. The amplitude of the geosynchronous Bz response strongly depends on the location of observer relative to the noon meridian, from the value of solar wind pressure before the disturbance arriving and firstly – from the amplitude of the pressure change.  相似文献   

14.
Crossings of the magnetopause near the subsolar point are analyzed using data of THEMIS mission. Variations of the magnetic field near magnetopause measured by one of THEMIS satellites are studied and compared with simultaneous measurements in the solar wind by another THEMIS satellite. The time delay of the solar wind arrival at the subsolar point of the magnetopause is taken into account. 30 and 90 s averaging of the magnetic field in the magnetosheath is produced. The results of averaging are compared with the results of measurements in the solar wind before the bow shock and foreshock. It is shown, that BxBx component of the magnetic field near magnetopause is near to zero, which supports the possibility to consider the magnetopause as the tangential discontinuity. Comparatively good correlation of ByBy component in the solar wind and near the magnetopause is observed. The correlation of BzBz component near the magnetopause and IMF is practically absent, the sign of the BzBz near the subsolar point does not coincide with the sign of IMF BzBz in ∼30% cases.  相似文献   

15.
The first results of the comparison of subauroral luminosity dynamics in 557,7 and 630,0 nm emission with simultaneous measurements of the ionospheric drift in the F2 region with a digisonde DPS-4 at the Yakutsk meridian (CGMC: 55–60N, 200°E) at Kp = 2–6 are presented. It is shown from the analysis of individual events that during the magnetospheric convection intensification after the turn of the IMF Bz – component to the south the equatorward extension of diffuse aurora takes place. At the same time the westward ionospheric drift velocity increases both in the diffuse aurora region and much equatorward of it due to the occurrence of the northward polarization electric field. We suppose that the generation of polarization field can be associated with the development of the region 2 FAC during the intensification of magnetospheric convection. The comparison of ground-based observations with measurements of the plasma drift aboard the DMSP-F15 satellite has been carried out.  相似文献   

16.
The prediction of the bow shock location is a proof of our understanding of the processes governing the solar wind – magnetosphere interaction. However, the models describing the bow shock location as a function of upstream parameters are based on a statistical processing of bow shock crossings observed by a single spacecraft. Such crossings locate the bow shock in motion, i.e., in a non-equilibrium state and this fact can be a source of significant errors. We have carefully analyzed a long interval of simultaneous observations of the bow shock and magnetopause and another interval of bow shock observations at two well-separated points. Our results suggest that often a small-scale deformation of the bow shock front due to magnetosheath fluctuations is the most appropriate interpretation of observations. Since the low-frequency magnetosheath variations exhibit largest amplitudes, a simultaneous bow shock displacement over a distance of 10–15 RE can be observed. We suggest that bow shock models can be probably improved if the tilt angle would be implemented as a parameter influencing the bow shock location in high latitudes.  相似文献   

17.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

18.
最近研究表叽磁层顶凹陷对磁层-电离层耦合具有重要作用.但是,磁层顶凹陷现象的确认需要多颗卫星的联合观测,目前为止报道的磁层顶凹陷事例非常少.本文利用THEMIS 5颗卫星的联合观测结果,分析了一例由磁鞘快速流引起的磁层顶凹陷事件.2007年7月21日10:00UT-10:45UT,位于日下点磁层顶附近的THEMIS卫星...  相似文献   

19.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

20.
Magnetic field disturbances and hot particles in the cusp as seen mainly by both the IMAP-3 magnetometer and PROMICS -3 spectrometer aboard the INTERBALL-AURORAL PROBE (AU) (perigee 4 Re, inclination 65 deg) are discussed. Orbits from March, 1997 are analysed accordingly. The INTERBALL-AU transits cross the middle of the cusp from low to high latitude from pre-noon to post-noon hours 11–13 MLT. Although the crossings are not exactly meridional, they reach 80–81 ILAT and permitting detection of the cusp, its subregions and their equatorward and poleward boundaries. Magnetic field disturbances are analysed for field-aligned currents (FACs) during different IMF conditions. Regions with structured forms are emphasised, in particular where a more intense current is concentrated. The following cases are compared: (a) the most intense current in the boundary cusp, adjacent to the ring current (March 7, southward IMF); (b) FACs are concentrated completely inside the cusp (March 13, southward -downward IMF) and (c) FACs with pronounced intensities equatorward from the cusp proper (March 11, duskward IMF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号