首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionospheric total electron content (TEC), derived by analyzing dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Varanasi (geomagnetic latitude 14°, 55′N, geomagnetic longitude 154°E) is studied. Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the solar minimum period from May 2007 to April 2008. It is found that the daily maximum TEC near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semiannual variation is seen with two maxima occurring in both spring and autumn. Statistical studies indicate that the variation of EIA crest in TEC is poorly correlated with Dst-index (r = −0.03) but correlated well with Kp-index (r = 0.82). The EIA crest in TEC is found to be more developed around 12:30 LT.  相似文献   

2.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

3.
The variation of TEC data at Wuhan station (geographic coordinate: 30.5°N, 114.4°E; geomagnetic coordinate: 19.2°N, 183.8°E) at crest of equatorial anomaly in China from January 1997 to December 2007 were analyzed. Variability with solar activity, annual, semiannual, diurnal and seasonal variation were also analyzed. The MSIS00 model and ISR model were used to analyze the possible mechanisms of the variabilities found in the results. The TEC data in 1997 and 2001 deduced from another crest station Xiamen (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) were used to contrast. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Typical diurnal variation behaves as a minimum of the TEC in the pre-dawn hours around 05:00–06:00LT and a maximum on the afternoon hours around 13:00–15:00LT. Some features like the semiannual anomaly and winter anomaly in TEC have been reported. The anomaly may be the result of common action of the electric field over the magnetic equatorial and the [O/N2] at the crest station.  相似文献   

4.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

5.
This paper presents small scale (duration ?1 h, ΔTEC ? 1TECU) night-time total electron content (TEC) enhancements observed at the equatorial anomaly region in China, for the first time. The data is from a GPS receiver chain established in 2005 by Institute of Center for Space Science and Applied Research, Chinese Academy of Sciences and a GPS receiver of International GPS Service (IGS), located between Fuzhou (26.1°N, 119.3°E) and Nanning (22.8°N, 108.3°E). Two other GPS observations of IGS taken at higher latitude were also used to investigate the localization of such phenomenon. The characteristics of the night-time TEC enhancement are examined with two case studies. The TEC increases about 1–3TECU, intermittently. While the night-time TEC enhancement mainly occurs at the equatorial anomaly region, it can be observed at middle latitude as well. The spatial size of the enhancement region is less than 5° in longitude. The primary statistical study shows that the TEC enhancement is more often observed in spring and autumn, but rarely in summer. It has no dependence on geomagnetic activity. The enhancement can occur both before and after midnight.  相似文献   

6.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   

7.
The periodic variation of TEC data at Xiamen station (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) at crest of equatorial anomaly in China from 1997 to 2004 is analyzed. The characteristic of TEC association with solar activity and geomagnetic activity are also analyzed. The method of continuous wavelet, cross wavelet and wavelet coherence transform methods have been used. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Several remarkable components including 128–256 days, 256–512 days and 512–1024 days exist in TEC variations. The TEC data at Xiamen station is in anti-phase with geomagnetic Dst index in semiannual time-scale, but this response only exists during high solar activity. Diurnal variation of TEC is studied for different seasons. Some features like the semiannual anomaly and winter anomaly in TEC have been reported.  相似文献   

8.
We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination −13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. −1.8°; mag. declination −15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. −11.1°; mag. declination −14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated.  相似文献   

9.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

10.
Ionospheric scintillation variations are studied using GPS measurements at the low latitude station of Shenzhen (22.59°N, 113.97°E), situated under the northern crest of the equatorial anomaly region, from the Chinese Meridian Project. The results are presented for data collected during the current phase of rising solar activity (low to high solar activity) from December 2010 to April 2014. The results show that GPS scintillation events were largely a nighttime phenomenon during the whole observation period. Scintillation events mainly occurred along the inner edge of the northern crest of the equatorial anomaly in China. The occurrence of scintillations in different sectors of the sky was also investigated, and the results revealed that it is more likely for the scintillations to be observed in the west sector of the sky above Shenzhen. During the present period of study, a total number of 512 total electron content (TEC) depletions and 460 lock loss events were observed. In addition, both of these events are likely to increase during periods of high solar activity, especially because the strong scintillations are often simultaneously accompanied by TEC depletions and lock losses by GPS receivers.  相似文献   

11.
This paper presents the vertical total electron content vTEC variations for three African stations, located at mid-low and equatorial latitudes, and operating since more than 10 years. The vTEC of the middle latitude GPS station in Alexandria, Egypt (31.2167°N; 29.9667°E, geographic) is compared to the vTEC of two others GPS stations: the first one in Rabat/Morocco (33.9981°N; 353.1457°E, geographic), and the second in Libreville/Gabon (0.3539°N; 9.6721°E, geographic). Our results discussed the diurnal, seasonal, and solar cycle dependences of vTEC at the local ionospheric conditions, during different phases of solar cycle in the light of the classification of Legrand and Simon. The vTEC over Alexandria exhibits the well-known equinoctial asymmetry which changes with the phases of the solar cycle; the spring vTEC is larger than that of autumn during the maximum, decreasing and minimum phases of solar cycle 23. During the increasing phase of solar cycle 24, it is the contrary. The diurnal variation of the vTEC presents multiple maxima during the equinox from 2005 to 2008 and during the summer solstice from 2006 to 2012. A nighttime vTEC enhancement and winter anomaly are also observed. During the deep solar minimum (2006–2009) the diurnal variation of the vTEC observed over Alexandria is similar to the diurnal variation observed during quiet magnetic period at equatorial latitudes. We observed also that the amplitude of vTEC at Libreville is larger than the amplitude of vTEC observed at Alexandria and Rabat, indeed Libreville is near the southern crest of the Equatorial Ionization anomaly. Finally, the correlation coefficient between vTEC and the sunspot number Rz is high and changes with solar cycle phases.  相似文献   

12.
An improvement to the Martian gravity field may be achieved by means of future orbiting spacecraft with small eccentricity and low altitude exemplified through a newly proposed mission design that may be tested in upcoming reconnaissance of Mars. Here, the near equatorial orbital character (with an inclination approximating 10°, eccentricity as 0.01 and semi-major axis as 4000 km) is considered, and its contribution to Martian gravity field solution is analyzed by comparing it with a hypothetical polar circular orbiter. The solution models are evaluated in terms of the following viewpoints: power spectra of gravity field coefficients, correlations of low degree zonal coefficients, precise orbit determination, and error distribution of both Mars free air gravity anomaly and areoid. At the same time, the contributions of the near equatorial orbiters in low degree zonal coefficients time variations are also considered. The present results show that the near equatorial orbiter allows us to improve the accuracy of the Martian gravity field solution, decrease correlation of low degree zonal coefficients, retrieve much better time variable information of low degree zonal coefficients, improve precise orbit determination, and provide more accurate Mars free air gravity anomaly and areoid around the equatorial region.  相似文献   

13.
Electron density measured by the Indian satellite SROSS C2 at the altitude of ∼500 km in the 75°E longitude sector for the ascending half of the solar cycle 22 from 1995 to 1999 are used to study the position and density of the equatorial ionization anomaly (EIA). Results show that the latitudinal position and peak electron density of the EIA crest and crest to trough ratios of the anomaly during the 10:00–14:00 LT period vary with season and from one year to another. Both EIA crest position and density are found to be asymmetric about the magnetic equator and the asymmetry depends on season as well as the year of observation, i.e., solar activity. The latitudinal position of the crest of the EIA and the crest density bears good positive correlation with F10.7 and the strength of the equatorial electrojet (EEJ).  相似文献   

14.
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation.  相似文献   

15.
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak.  相似文献   

16.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   

17.
The ionospheric Total Electron Content (TECs), derived by dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Bhopal (23.2°N, 77.4°E, Geomagnetic 14.2°N) were analyzed for the period of January, 2005 to February, 2008. The work deals with monthly, diurnal, solar and magnetic activity variations on night-time enhancement in TEC. From a total of 157 night-time enhancements, 75 occur during pre-midnight and 82 post-midnight hours. The occurrence of night-time enhancement in TEC is utmost during summer months, followed by equinox and winter months. The occurrence of night-time enhancement in TEC decreases with increase in solar and magnetic activities. We observed that peak size and half amplitude duration are positively correlated, while time of occurrence of night-time enhancement in TEC and time of peak enhancement are negatively correlated with solar activity. The peak size, half amplitude duration, time of peak enhancement and time of occurrence of night-time enhancement in TEC shows negative correlation with magnetic activity. The results have been compared with the earlier ones and discussed in terms of possible source mechanism responsible for the enhancement at anomaly crest region.  相似文献   

18.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

19.
The electrodynamics of the ionosphere in the tropical region presents various scientific aspects, which remain subject of intensive investigations and debates by the scientific community. During the year 2002, in a joint project between the Universidade do Vale do Paraíba (UNIVAP) and Universidade Luterana do Brasil (ULBRA), a chain of three Canadian Advanced Digital Ionosondes (CADIs) was established nearly along the geomagnetic meridian direction, for tropical ionospheric studies, such as, changes and response due to geomagnetic disturbances and thermosphere–ionosphere coupling and the generation and dynamics of ionospheric irregularities, in the Brazilian sector. The locations of the three ionosondes stations are São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S – under the southern crest of equatorial ionospheric anomaly), Palmas (10.2°S, 48.2°W, dip latitude 5.5°S – near the magnetic equator) and Manaus (2.9°S, 60.0°W, dip latitude 6.4°N – between the geographic and geomagnetic dip equators). It should be pointed out that Palmas and Manaus are located on the opposite sides of the magnetic equator but both are south of the geographic equator. The three CADIs work in time-synchronized mode and obtain ionograms every 5 min. This configuration of the ionospheric sounding stations allowed us to study the F-region dynamics during geomagnetically disturbed period in the meridional direction. Just after the installation and testing of the three CADIs, on September 05, 2002 a coronal mass ejection (CME) left the Sun and about 2 days after the CME left the Sun, it reached the Earth’s magnetosphere and complex and multi step events took place during the period September 07–09. In the study we note that the equatorial stations located north (Manaus, dip latitude 6.4°N) and south (Palmas, dip latitude 5.5°S) of the dip equator presented significant F-layer height asymmetries during the storm main phase. In addition, the low-latitude station SJC (dip latitude 17.6°S) presented decrease in the F-layer densities (negative phase), whereas Palmas presented increase in the F-layer densities (positive phase) during the main phase. This was followed by positive phase at both the stations. During the first night of the recovery phase a strong formation and evolution of large-scale ionospheric irregularities (equatorial spread-F (ESF)) was observed, but on the second night of the recovery phase, there was strong and almost simultaneous sporadic E (Es) formation at all three stations. During the presence of Es, spread-F formation is not observed, indicating the suppression of spread-F, possibly by sporadic E.  相似文献   

20.
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号