首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have performed a detailed Monte-Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of xy scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2005 MC calculations with GEANT calculations and with the ATIC CERN data.  相似文献   

2.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   

3.
The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to investigate the composition and energy spectra of cosmic rays at the highest energies currently accessible by direct measurements, i.e., the region up to 100 TeV. The instrument consists of a silicon matrix for charge measurement, a graphite target (0.75 nuclear interaction length) to induce hadronic interactions, three layers of scintillator strip hodoscopes for triggering and trajectory reconstruction, and a Bismuth Germanate (BGO) crystal calorimeter (18 radiation lengths) to measure particle energies. ATIC has had two successful Long Duration Balloon (LDB) flights from McMurdo, Antarctica: one from 12/28/00 to 01/13/01 and the other from 12/29/02 to 01/18/03. We present the energy spectra of protons and helium extracted from the first flight, over the energy range from 100 GeV to 100 TeV, and compare them with the results from other experiments at both the lower and higher energies. ATIC-1 results do not indicate significant differences in spectral shape between protons and helium over the investigated energy range.  相似文献   

4.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed for high energy cosmic ray ion detection. The possibility to identify high energy primary cosmic ray electrons in the presence of the ‘background’ of cosmic ray protons has been studied by simulating nuclear-electromagnetic cascade showers using the FLUKA Monte Carlo simulation code. The ATIC design, consisting of a graphite target and an energy detection device, a totally active calorimeter built up of 2.5 cm × 2.5 cm × 25.0 cm BGO scintillator bars, gives sufficient information to distinguish electrons from protons. While identifying about 80% of electrons as such, only about 2 in 10,000 protons (@ 150 GeV) will mimic electrons. In September of 1999 ATIC was exposed to high-energy electron and proton beams at the CERN H2 beam line, and this data confirmed the electron detection capabilities of ATIC. From 2000-12-28 to 2001-01-13 ATIC was flown as a long duration balloon test flight from McMurdo, Antarctica, recording over 360 h of data and allowing electron separation to be confirmed in the flight data. In addition, ATIC electron detection capabilities can be checked by atmospheric gamma-ray observations.  相似文献   

5.
Launched from McMurdo (Antarctica) in December 2005, the balloon experiment CREAM (cosmic ray energetics and mass) collected about 15 million triggers during its second flight of 28 days. Redundant charge identification, by two pixelated silicon arrays and a time resolved pulse shaping technique from a scintillator system, allowed a clear signature of the primary nuclei. The energy was measured with a tungsten/SciFi calorimeter preceded by a graphite target. Preliminary results from the analysis of the data of the second flight are presented.  相似文献   

6.
The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.  相似文献   

7.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   

8.
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.

These investigations will allow one to determine:

• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;

• differential energy spectra of fast neutrons (1–20 MeV);

• estimation of absorbed and equivalent doses from charged and neutral component CR;

• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.

The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”.  相似文献   


9.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   

10.
The Balloon Borne Experiment with a Superconducting Solenoid Spectrometer (BESS) was flown annually in 1993, 1994, and 1995. In this report we present the energy spectra and isotopic composition of cosmic ray H and He measured from the 1993 flight. The low energy fluxes of H and He agree with the IMP-8 satellite data for a 26 day period (7/14/93 – 8/9/93) that overlapped the BESS flight. Both 2H and 3He were well separated from 1H and 4He. The measured spectra were corrected for the atmospheric overburden and compared with the interstellar/heliospheric propagation calculations.  相似文献   

11.
We present a large area, balloon borne, NaI(Tl) detector for low-energy gamma rays with temporal signature : FIGARO.The main detector is a mosaic of 12 NaI(Tl) tiles 22.5 × 15 × 5 cm, for a total geometric area of 4050 cm2.In the energy band 140 keV - 6 MeV, the expected background counting rate at float altitude is in the range of two to three thousands counts per second.For pulsar analysis the expected 3δ sensitivity for 5 hours exposition time is 2.5 10?4 ph/cm2.s.MeV (150–500 keV) 1.5 10?4 ph/cm2.s.MeV (1–6 MeV). This performance, together with the large effective area and the relatively short duration of a balloon flight, make FIGARO particularly suitable for the identification of sources by means of temporal analysis.For objectives in the Northern sky, including the Crab pulsar, a transmediterranean flight is planned for the summer of 1982 ; a Southern mission is scheduled in Brazil for the fall of 1983 (Vela, PSR 1822-09).  相似文献   

12.
Several recent results important for production of ion pairs in the Earth atmosphere by various primary cosmic ray nuclei are presented. The direct ionization by various primary cosmic ray nuclei is explicitly obtained. The longitudinal profile of atmospheric cascades is sensitive to the energy and mass (charge) of the primary particle. In this study different cosmic ray nuclei are considered as primaries, namely Helium, Oxygen and Iron nuclei. The cosmic ray induced ionization is obtained on the basis of CORSIKA 6.52 code simulations using FLUKA 2006 and QGSJET II hadronic interaction models. The energy of the primary particles is normalized to GeV per nucleon. In addition, the ionization yield function Y is normalized as ion pair production per nucleon. The obtained ionization yield functions Y for various primaries are compared. The presented results and their application are discussed.  相似文献   

13.
The preliminary energy spectra of heavy nuclei C, O, Ne, Mg, Si, and Fe in the primary cosmic rays measured by the ATIC-2 experiment are presented and compared to previous data and to propagation models. Using previous data to extend the ATIC-2 results for all heavy nuclei to higher energy, the combined spectra can be best fit with diffusion model with weak reacceleration and scattering on random magnetic field with a Kolmogorov spectrum fluctuations becoming dominant at high energy.  相似文献   

14.
The random nature of sources (the supernova remnants) leads to the fluctuations of cosmic ray intensity in space and time. We calculate the expected fluctuations in a flat-halo diffusion model for particles with energies from 0.1 to 103 TeV. The data on energy spectra and anisotropy of very high energy protons, nuclei and electrons, and the astronomical data on supernova remnants, the potential sources of cosmic rays, are used to constrain the value of the cosmic-ray diffusion coefficient and its dependence on energy.  相似文献   

15.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm2. Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, 2H/1H. The results are also compared with previous measurements and theoretical predictions.  相似文献   

16.
Case study is presented for three Forbush decreases in 2004–2005, using cosmic ray data from ground-based detectors – neutron monitors and a muon detector. One of them was a typical event (September 2005), while two other were quite unusual (November 2004 and January 2005). Two unusual features, not expected from the standard theory, are revealed: (1) the recovery time of a Forbush decrease can strongly depend on the energy; (2) an over-recovery is observed in the most energetic cosmic ray data (muon detector). A simple scenario is suggested for the observed phenomenon.  相似文献   

17.
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV–700 GeV, electrons 50 MeV–400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV–190 GeV), positrons (50 MeV–270 GeV) and search for antimatter (with a precision of the order of 10−8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th 2006 in a 350 × 600 km orbit with an inclination of 70°. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a silicon–tungsten calorimeter and a neutron detector for lepton/hadron identification. An anticounter system is used off-line to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton (e+ + e) component up to 2 TeV. In this work we focus on the first months of operations of the experiment during the commissioning phase.  相似文献   

18.
Features of two successive Forbush effects of the galactic cosmic ray intensity in October–November 2003 have been studied based on the neutron monitors data. The rigidity spectrum of the galactic cosmic ray intensity in the course of the first Forbush effect (22–27 October) is gradually hardening, while the rigidity spectrum of the second Forbush effect (28 October–10 November) from the starting moment is very hard. As far, the energy range of the turbulence of the interplanetary magnetic field is in general responsible for the diffusion of galactic cosmic ray particles of the energy 5–50 GeV (to which neutron monitors are sensitive), we postulate that the gradually hardening (from day to day) of the rigidity spectrum of the first Forbush effect is associated with the enhancement of the power spectral density in the energy range of the interplanetary magnetic field turbulence caused by the large scale irregularities generated due to the interaction of the extending high speed disturbances with the background solar wind. The very hard rigidity spectrum (from the starting moment) of the second Forbush effect is generally associated with the well established new structure of the energy range of the interplanetary magnetic field turbulence enriched by the already created large scale irregularities. The gradually softening of the rigidity spectrum during the recovery phase of the second Forbush effect confirms that the disturbed interplanetary magnetic field turbulence step by step returns to the initial state.  相似文献   

19.
The IPM detector consists of two separate impact ionization detectors, one of them covered by a 2.5 μm thick plastic film and a piezoelectric sensor mounted to the back of the joint impact plate. First impact tests, with iron projectiles in the mass range 10?15 to 10?9 g and in the speed range 1 km/s to 70 km/s, were performed with the calibration (FS) and the flight (F) model of this detector. The charge yield at 69 km/s impact speed (flyby speed of GIOTTO) has been extrapolated from the data and amounts to 400 Coulombs per gram. This corresponds to a preliminary sensitivity threshold for the impact ionization detector of about 6×10?17 g. The penetration limit introduced by the plastic film is about 10?14 g for iron particles. Only the biggest particles used for the test produced signals at the piezoelectric sensor. If one assumes an energy dependence of the piozoelectric signal, a preliminary sensitivity threshold of about 10?13 g at 69 km/s can be established.  相似文献   

20.
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field.PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号